mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-22 18:09:06 +00:00
[test] merge old components to test to model zoo (#4945)
* [test] add custom models in model zoo * [test] update legacy test * [test] update model zoo * [test] update gemini test * [test] remove components to test
This commit is contained in:
@@ -1,10 +1,11 @@
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
import colossalai
|
||||
from colossalai.legacy.amp import AMP_TYPE
|
||||
from colossalai.legacy.core import global_context as gpc
|
||||
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
|
||||
from tests.components_to_test.registry import non_distributed_component_funcs
|
||||
from colossalai.testing import DummyDataloader, parameterize, rerun_if_address_is_in_use, spawn
|
||||
from tests.kit.model_zoo import model_zoo
|
||||
|
||||
CONFIG = dict(
|
||||
parallel=dict(pipeline=dict(size=1), tensor=dict(size=1, mode=None)), fp16=dict(mode=None), clip_grad_norm=1.0
|
||||
@@ -15,29 +16,29 @@ CONFIG = dict(
|
||||
@parameterize("amp_mode", [AMP_TYPE.APEX, AMP_TYPE.TORCH, AMP_TYPE.NAIVE, None])
|
||||
def run_train(model_name, amp_mode):
|
||||
# FIXME: test bert
|
||||
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||
model_builder, data_gen_fn, *_ = next(iter(model_zoo.get_sub_registry(model_name).values()))
|
||||
train_dataloader = DummyDataloader(data_gen_fn)
|
||||
criterion = lambda x: x.sum()
|
||||
gpc.config.fp16["mode"] = amp_mode
|
||||
model_builder, train_dataloader, _, optimizer_class, criterion = get_components_func()
|
||||
|
||||
model = model_builder(checkpoint=False)
|
||||
model = model_builder()
|
||||
engine, train_dataloader, *args = colossalai.legacy.initialize(
|
||||
model=model,
|
||||
optimizer=optimizer_class(model.parameters(), lr=1e-3),
|
||||
optimizer=torch.optim.Adam(model.parameters(), lr=1e-3),
|
||||
criterion=criterion,
|
||||
train_dataloader=train_dataloader,
|
||||
)
|
||||
|
||||
try:
|
||||
engine.train()
|
||||
for data, label in train_dataloader:
|
||||
for data in train_dataloader:
|
||||
engine.zero_grad()
|
||||
data = data.cuda()
|
||||
label = label.cuda()
|
||||
data = {k: v.cuda() if isinstance(v, torch.Tensor) else v for k, v in data.items()}
|
||||
if criterion:
|
||||
output = engine(data)
|
||||
loss = engine.criterion(output, label)
|
||||
output = engine(**data)
|
||||
loss = engine.criterion(output)
|
||||
else:
|
||||
loss = engine(data, label)
|
||||
loss = engine(**data)
|
||||
engine.backward(loss)
|
||||
engine.step()
|
||||
break
|
||||
|
Reference in New Issue
Block a user