mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-02 01:28:31 +00:00
[test] merge old components to test to model zoo (#4945)
* [test] add custom models in model zoo * [test] update legacy test * [test] update model zoo * [test] update gemini test * [test] remove components to test
This commit is contained in:
@@ -12,8 +12,7 @@ from colossalai.utils import set_seed
|
||||
from colossalai.utils.cuda import get_current_device
|
||||
from colossalai.zero import GeminiDDP, GeminiOptimizer
|
||||
from colossalai.zero.gemini.chunk import search_chunk_configuration
|
||||
from tests.components_to_test import run_fwd_bwd
|
||||
from tests.components_to_test.registry import non_distributed_component_funcs
|
||||
from tests.kit.model_zoo import model_zoo, run_fwd_bwd
|
||||
|
||||
PLACEMENT_CONFIGS = [
|
||||
{"placement_policy": "static", "shard_param_frac": 0.0}, # zero2
|
||||
@@ -38,7 +37,7 @@ def check_grad(model: GeminiDDP, torch_model: torch.nn.Module):
|
||||
|
||||
@parameterize("placement_config", PLACEMENT_CONFIGS)
|
||||
@parameterize("keep_gather", [False, True])
|
||||
@parameterize("model_name", ["gpt2", "bert"])
|
||||
@parameterize("model_name", ["transformers_gpt_lm"])
|
||||
@parameterize("use_grad_checkpoint", [False, True])
|
||||
@parameterize("master_weights", [False, True])
|
||||
def exam_gpt_fwd_bwd(
|
||||
@@ -49,17 +48,22 @@ def exam_gpt_fwd_bwd(
|
||||
master_weights: bool = True,
|
||||
):
|
||||
init_device = get_current_device()
|
||||
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
||||
model_builder, data_gen_fn, output_transform_fn, loss_fn, *_ = next(
|
||||
iter(model_zoo.get_sub_registry(model_name).values())
|
||||
)
|
||||
|
||||
set_seed(42)
|
||||
model = model_builder(use_grad_checkpoint)
|
||||
model = model_builder()
|
||||
|
||||
set_seed(42)
|
||||
torch_model = model_builder(use_grad_checkpoint).cuda()
|
||||
torch_model = model_builder().cuda()
|
||||
for torch_p, p in zip(torch_model.parameters(), model.parameters()):
|
||||
torch_p.data.copy_(p.data)
|
||||
|
||||
if use_grad_checkpoint:
|
||||
model.gradient_checkpointing_enable()
|
||||
torch_model.gradient_checkpointing_enable()
|
||||
|
||||
world_size = torch.distributed.get_world_size()
|
||||
config_dict, *_ = search_chunk_configuration(model, search_range_m=1, search_interval=100)
|
||||
config_dict[world_size]["chunk_size"] = 5000
|
||||
@@ -77,25 +81,22 @@ def exam_gpt_fwd_bwd(
|
||||
torch_model = DDP(torch_model, device_ids=[rank])
|
||||
|
||||
set_seed(rank)
|
||||
for i, (input_ids, label) in enumerate(train_dataloader):
|
||||
# you can only test a single fwd + bwd.
|
||||
# after bwd param is grad for Gemini, due to the chunk reuse optimization.
|
||||
if i > 0:
|
||||
break
|
||||
input_ids, label = input_ids.cuda(), label.cuda()
|
||||
|
||||
torch_optim.zero_grad()
|
||||
zero_optim.zero_grad()
|
||||
data = data_gen_fn()
|
||||
data = {k: v.cuda() if isinstance(v, torch.Tensor) else v for k, v in data.items()}
|
||||
|
||||
# set random seed is same as torch_model.eval()
|
||||
set_seed(42)
|
||||
torch_loss = run_fwd_bwd(torch_model, input_ids, label, criterion, torch_optim)
|
||||
set_seed(42)
|
||||
loss = run_fwd_bwd(model, input_ids, label, criterion, zero_optim)
|
||||
torch_optim.zero_grad()
|
||||
zero_optim.zero_grad()
|
||||
|
||||
assert torch.equal(torch_loss, loss)
|
||||
# set random seed is same as torch_model.eval()
|
||||
set_seed(42)
|
||||
torch_loss = run_fwd_bwd(torch_model, data, output_transform_fn, loss_fn, optimizer=torch_optim)
|
||||
set_seed(42)
|
||||
loss = run_fwd_bwd(model, data, output_transform_fn, loss_fn, optimizer=zero_optim)
|
||||
|
||||
check_grad(model, torch_model)
|
||||
assert_close(torch_loss.float(), loss.float())
|
||||
|
||||
check_grad(model, torch_model)
|
||||
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
|
@@ -3,38 +3,34 @@ import torch
|
||||
import torch.distributed as dist
|
||||
|
||||
import colossalai
|
||||
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
|
||||
from colossalai.testing import DummyDataloader, parameterize, rerun_if_address_is_in_use, spawn
|
||||
from colossalai.utils import set_seed
|
||||
from colossalai.zero import GeminiDDP
|
||||
from colossalai.zero.gemini.chunk import search_chunk_configuration
|
||||
from colossalai.zero.gemini.memory_tracer.runtime_mem_tracer import RuntimeMemTracer
|
||||
from tests.components_to_test import run_fwd_bwd
|
||||
from tests.components_to_test.registry import non_distributed_component_funcs
|
||||
from tests.kit.model_zoo import model_zoo, run_fwd_bwd
|
||||
|
||||
# run gemini use the runtime memory tracer
|
||||
|
||||
|
||||
@parameterize("placement_policy", ["auto"])
|
||||
@parameterize("keep_gather", [False])
|
||||
@parameterize("model_name", ["repeated_computed_layers", "bert", "albert", "gpt2"])
|
||||
@parameterize("model_name", ["transformers_bert_for_sequence_classification"])
|
||||
@parameterize("use_grad_checkpoint", [False, True])
|
||||
def run_gemini_use_rmt(placement_policy, keep_gather, model_name: str, use_grad_checkpoint: bool = False):
|
||||
set_seed(42)
|
||||
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
||||
model_builder, data_gen_fn, output_transform_fn, *_ = next(iter(model_zoo.get_sub_registry(model_name).values()))
|
||||
|
||||
model = model_builder(use_grad_checkpoint).cuda()
|
||||
model = model_builder().cuda()
|
||||
if use_grad_checkpoint:
|
||||
model.gradient_checkpointing_enable()
|
||||
|
||||
print(f"model_name {model_name}")
|
||||
runtime_mem_tracer = RuntimeMemTracer(model)
|
||||
for i, (input_ids, label) in enumerate(train_dataloader):
|
||||
if i > 0:
|
||||
break
|
||||
input_ids, label = input_ids.cuda(), label.cuda()
|
||||
|
||||
# mem tracing
|
||||
if i == 0:
|
||||
run_fwd_bwd(runtime_mem_tracer, input_ids, label, criterion, runtime_mem_tracer)
|
||||
runtime_mem_tracer = RuntimeMemTracer(model)
|
||||
data = data_gen_fn()
|
||||
data = {k: v.cuda() if isinstance(v, torch.Tensor) else v for k, v in data.items()}
|
||||
run_fwd_bwd(runtime_mem_tracer, data, output_transform_fn, optimizer=runtime_mem_tracer)
|
||||
memstats = runtime_mem_tracer.memstats()
|
||||
runtime_tracer_non_model_data = runtime_mem_tracer._memstats._non_model_data_cuda_list
|
||||
print("runtime tracer non model data points: ", len(runtime_tracer_non_model_data))
|
||||
@@ -62,16 +58,17 @@ def run_gemini_use_rmt(placement_policy, keep_gather, model_name: str, use_grad_
|
||||
)
|
||||
|
||||
set_seed(dist.get_rank())
|
||||
for i, (input_ids, label) in enumerate(train_dataloader):
|
||||
train_dataloader = DummyDataloader(data_gen_fn)
|
||||
for i, data in enumerate(train_dataloader):
|
||||
# you can only test a single fwd + bwd.
|
||||
# after bwd param is grad for Gemini, due to the chunk reuse optimization.
|
||||
# print(f'iteration {i}')
|
||||
if i > 4:
|
||||
break
|
||||
input_ids, label = input_ids.cuda(), label.cuda()
|
||||
data = {k: v.cuda() if isinstance(v, torch.Tensor) else v for k, v in data.items()}
|
||||
|
||||
set_seed(42)
|
||||
run_fwd_bwd(model, input_ids, label, criterion, model)
|
||||
run_fwd_bwd(model, data, output_transform_fn, optimizer=model)
|
||||
|
||||
gemini_non_model_data = model.gemini_manager._mem_stats_collector._memstats.non_model_data_list("cuda")
|
||||
|
||||
|
@@ -7,13 +7,12 @@ from torch.testing import assert_close
|
||||
|
||||
import colossalai
|
||||
from colossalai.nn.optimizer import HybridAdam
|
||||
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
|
||||
from colossalai.testing import DummyDataloader, parameterize, rerun_if_address_is_in_use, spawn
|
||||
from colossalai.utils import set_seed
|
||||
from colossalai.utils.cuda import get_current_device
|
||||
from colossalai.zero import GeminiDDP, GeminiOptimizer
|
||||
from colossalai.zero.gemini.chunk import search_chunk_configuration
|
||||
from tests.components_to_test import run_fwd
|
||||
from tests.components_to_test.registry import non_distributed_component_funcs
|
||||
from tests.kit.model_zoo import model_zoo, run_fwd
|
||||
|
||||
PLACEMENT_CONFIGS = [
|
||||
{"placement_policy": "static", "shard_param_frac": 0.0}, # zero2
|
||||
@@ -38,7 +37,7 @@ def check_grad(model: GeminiDDP, torch_model: torch.nn.Module):
|
||||
|
||||
# Compare gradients.
|
||||
for p0, p1 in zip(model.parameters(), torch_model.parameters()):
|
||||
assert_close(p0, p1.grad, rtol=1e-3, atol=5e-5)
|
||||
assert_close(p0, p1.grad, rtol=2e-3, atol=2e-2)
|
||||
|
||||
# Release gradient chunks and move them to gradient device.
|
||||
for grad_chunk, device in zip(grad_chunk_list, device_list):
|
||||
@@ -48,21 +47,19 @@ def check_grad(model: GeminiDDP, torch_model: torch.nn.Module):
|
||||
|
||||
@parameterize("placement_config", PLACEMENT_CONFIGS)
|
||||
@parameterize("keep_gathered", [False, True])
|
||||
@parameterize("model_name", ["gpt2", "bert"])
|
||||
@parameterize("use_grad_checkpoint", [False, True])
|
||||
@parameterize("model_name", ["transformers_gpt_lm"])
|
||||
@parameterize("master_weights", [False, True])
|
||||
def exam_gemini_grad_acc(
|
||||
placement_config, keep_gathered: bool, model_name: str, use_grad_checkpoint: bool, master_weights: bool
|
||||
):
|
||||
def exam_gemini_grad_acc(placement_config, keep_gathered: bool, model_name: str, master_weights: bool):
|
||||
init_device = get_current_device()
|
||||
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||
model_builder, train_dataloader, _, _, criterion = get_components_func()
|
||||
model_builder, data_gen_fn, output_transform_fn, loss_fn, *_ = next(
|
||||
iter(model_zoo.get_sub_registry(model_name).values())
|
||||
)
|
||||
|
||||
set_seed(42)
|
||||
gemini_model = model_builder(use_grad_checkpoint)
|
||||
gemini_model = model_builder()
|
||||
|
||||
set_seed(42)
|
||||
torch_model = model_builder(use_grad_checkpoint).cuda()
|
||||
torch_model = model_builder().cuda()
|
||||
for torch_p, p in zip(torch_model.parameters(), gemini_model.parameters()):
|
||||
torch_p.data.copy_(p.data)
|
||||
|
||||
@@ -94,22 +91,23 @@ def exam_gemini_grad_acc(
|
||||
|
||||
set_seed(rank)
|
||||
accum_iter = 4
|
||||
for i, (input_ids, label) in enumerate(train_dataloader):
|
||||
train_dataloader = DummyDataloader(data_gen_fn)
|
||||
for i, data in enumerate(train_dataloader):
|
||||
delay_unscale = False if (i + 1) % accum_iter == 0 else True
|
||||
input_ids, label = input_ids.cuda(), label.cuda()
|
||||
data = {k: v.cuda() if isinstance(v, torch.Tensor) else v for k, v in data.items()}
|
||||
|
||||
set_seed(42 + rank)
|
||||
torch_loss = run_fwd(torch_model, input_ids, label, criterion)
|
||||
torch_loss = run_fwd(torch_model, data, output_transform_fn, loss_fn)
|
||||
torch_loss = torch_loss / accum_iter
|
||||
with amp.scale_loss(torch_loss, torch_optim, delay_unscale=delay_unscale) as scaled_loss:
|
||||
scaled_loss.backward()
|
||||
|
||||
set_seed(42 + rank)
|
||||
gemini_loss = run_fwd(gemini_model, input_ids, label, criterion)
|
||||
gemini_loss = run_fwd(gemini_model, data, output_transform_fn, loss_fn)
|
||||
gemini_loss = gemini_loss / accum_iter
|
||||
gemini_optim.backward(gemini_loss)
|
||||
|
||||
assert torch.allclose(torch_loss, gemini_loss, rtol=1e-3, atol=1e-5)
|
||||
assert torch.allclose(torch_loss.float(), gemini_loss.float(), rtol=1e-3, atol=1e-5)
|
||||
|
||||
check_grad(gemini_model, torch_model)
|
||||
|
||||
|
@@ -7,12 +7,11 @@ from torch.testing import assert_close
|
||||
import colossalai
|
||||
from colossalai.legacy.amp import convert_to_apex_amp
|
||||
from colossalai.nn.optimizer import HybridAdam
|
||||
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
|
||||
from colossalai.testing import DummyDataloader, parameterize, rerun_if_address_is_in_use, spawn
|
||||
from colossalai.utils import set_seed
|
||||
from colossalai.zero import GeminiDDP, GeminiOptimizer
|
||||
from colossalai.zero.gemini.chunk import search_chunk_configuration
|
||||
from tests.components_to_test import run_fwd_bwd
|
||||
from tests.components_to_test.registry import non_distributed_component_funcs
|
||||
from tests.kit.model_zoo import model_zoo, run_fwd_bwd
|
||||
|
||||
PLACEMENT_CONFIGS = [
|
||||
{
|
||||
@@ -51,12 +50,13 @@ def check_param(model: GeminiDDP, torch_model: torch.nn.Module):
|
||||
|
||||
|
||||
@parameterize("placement_config", PLACEMENT_CONFIGS)
|
||||
@parameterize("model_name", ["gpt2"])
|
||||
@parameterize("model_name", ["transformers_gpt_lm"])
|
||||
@parameterize("master_weights", [True, False])
|
||||
def exam_grad_clipping(placement_config, model_name: str, master_weights: bool):
|
||||
set_seed(1912)
|
||||
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
||||
model_builder, data_gen_fn, output_transform_fn, loss_fn, *_ = next(
|
||||
iter(model_zoo.get_sub_registry(model_name).values())
|
||||
)
|
||||
|
||||
torch_model = model_builder().cuda()
|
||||
amp_config = dict(opt_level="O2", keep_batchnorm_fp32=False, loss_scale=32)
|
||||
@@ -94,21 +94,17 @@ def exam_grad_clipping(placement_config, model_name: str, master_weights: bool):
|
||||
torch_model.train()
|
||||
|
||||
set_seed(dist.get_rank() * 3 + 128)
|
||||
for i, (data, label) in enumerate(train_dataloader):
|
||||
train_dataloader = DummyDataloader(data_gen_fn)
|
||||
for i, data in enumerate(train_dataloader):
|
||||
if i > 2:
|
||||
break
|
||||
data = data.cuda()
|
||||
label = label.cuda()
|
||||
data = {k: v.cuda() if isinstance(v, torch.Tensor) else v for k, v in data.items()}
|
||||
|
||||
zero_optim.zero_grad()
|
||||
torch_optim.zero_grad()
|
||||
|
||||
torch_loss = run_fwd_bwd(torch_model, data, label, criterion, torch_optim)
|
||||
loss = run_fwd_bwd(model, data, label, criterion, zero_optim)
|
||||
|
||||
# as no master weights leads to error accumulation, we don't check the loss
|
||||
if master_weights:
|
||||
assert_close(torch_loss, loss)
|
||||
run_fwd_bwd(torch_model, data, output_transform_fn, loss_fn, optimizer=torch_optim)
|
||||
run_fwd_bwd(model, data, output_transform_fn, loss_fn, optimizer=zero_optim)
|
||||
|
||||
import apex.amp as apex_amp
|
||||
|
||||
|
@@ -9,13 +9,12 @@ from torch.testing import assert_close
|
||||
import colossalai
|
||||
from colossalai.legacy.amp import convert_to_apex_amp
|
||||
from colossalai.nn.optimizer import HybridAdam
|
||||
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
|
||||
from colossalai.testing import DummyDataloader, parameterize, rerun_if_address_is_in_use, spawn
|
||||
from colossalai.utils import set_seed
|
||||
from colossalai.utils.cuda import get_current_device
|
||||
from colossalai.zero import GeminiDDP, GeminiOptimizer
|
||||
from colossalai.zero.gemini.chunk import search_chunk_configuration
|
||||
from tests.components_to_test import run_fwd_bwd
|
||||
from tests.components_to_test.registry import non_distributed_component_funcs
|
||||
from tests.kit.model_zoo import model_zoo, run_fwd, run_fwd_bwd
|
||||
|
||||
PLACEMENT_CONFIGS = [
|
||||
{"placement_policy": "static", "shard_param_frac": 0.0}, # zero2
|
||||
@@ -53,12 +52,11 @@ def single_chunk_init(model: torch.nn.Module, placement_config: dict):
|
||||
|
||||
|
||||
@parameterize("placement_config", PLACEMENT_CONFIGS)
|
||||
@parameterize("model_name", ["gpt2"])
|
||||
@parameterize("model_name", ["transformers_gpt_lm"])
|
||||
@parameterize("model_init_func", [single_chunk_init, multi_chunk_init])
|
||||
def exam_inference(placement_config: dict, model_name: str, model_init_func: Callable):
|
||||
set_seed(19360226)
|
||||
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
||||
model_builder, data_gen_fn, output_transform_fn, *_ = next(iter(model_zoo.get_sub_registry(model_name).values()))
|
||||
|
||||
torch_model = model_builder().cuda()
|
||||
amp_config = dict(opt_level="O2", keep_batchnorm_fp32=False, loss_scale=128)
|
||||
@@ -79,29 +77,27 @@ def exam_inference(placement_config: dict, model_name: str, model_init_func: Cal
|
||||
torch_model.eval()
|
||||
|
||||
set_seed(dist.get_rank() * 3 + 128)
|
||||
train_dataloader = iter(train_dataloader)
|
||||
train_dataloader = iter(DummyDataloader(data_gen_fn))
|
||||
|
||||
def train_iter():
|
||||
input_ids, label = next(train_dataloader)
|
||||
input_ids, label = input_ids.cuda(), label.cuda()
|
||||
data = next(train_dataloader)
|
||||
data = {k: v.cuda() if isinstance(v, torch.Tensor) else v for k, v in data.items()}
|
||||
zero_optim.zero_grad()
|
||||
torch_optim.zero_grad()
|
||||
torch_loss = run_fwd_bwd(torch_model, input_ids, label, criterion, torch_optim)
|
||||
loss = run_fwd_bwd(model, input_ids, label, criterion, zero_optim)
|
||||
assert_close(torch_loss, loss, rtol=1e-5, atol=1e-5)
|
||||
torch_loss = run_fwd_bwd(torch_model, data, output_transform_fn, optimizer=torch_optim)
|
||||
loss = run_fwd_bwd(model, data, output_transform_fn, optimizer=zero_optim)
|
||||
assert_close(torch_loss.float(), loss.float(), rtol=1e-5, atol=1e-5)
|
||||
zero_optim.step()
|
||||
torch_optim.step()
|
||||
check_param(model, torch_model)
|
||||
|
||||
def inference_iter():
|
||||
input_ids, label = next(train_dataloader)
|
||||
input_ids, label = input_ids.cuda(), label.cuda()
|
||||
data = next(train_dataloader)
|
||||
data = {k: v.cuda() if isinstance(v, torch.Tensor) else v for k, v in data.items()}
|
||||
with torch.no_grad():
|
||||
torch_output = torch_model(input_ids)
|
||||
torch_loss = criterion(torch_output.float(), label)
|
||||
zero_output = model(input_ids)
|
||||
zero_loss = criterion(zero_output.float(), label)
|
||||
assert_close(torch_loss, zero_loss)
|
||||
torch_loss = run_fwd(torch_model, data, output_transform_fn)
|
||||
zero_loss = run_fwd(model, data, output_transform_fn)
|
||||
assert_close(torch_loss.float(), zero_loss.float(), rtol=1e-5, atol=1e-5)
|
||||
|
||||
train_iter()
|
||||
inference_iter()
|
||||
|
@@ -1,20 +1,18 @@
|
||||
import pytest
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from packaging.version import Version
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.testing import assert_close
|
||||
|
||||
import colossalai
|
||||
from colossalai.legacy.amp import convert_to_apex_amp
|
||||
from colossalai.nn.optimizer import HybridAdam
|
||||
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
|
||||
from colossalai.testing import DummyDataloader, parameterize, rerun_if_address_is_in_use, spawn
|
||||
from colossalai.utils import set_seed
|
||||
from colossalai.utils.cuda import get_current_device
|
||||
from colossalai.zero import GeminiDDP, GeminiOptimizer
|
||||
from colossalai.zero.gemini.chunk import search_chunk_configuration
|
||||
from tests.components_to_test import run_fwd_bwd
|
||||
from tests.components_to_test.registry import non_distributed_component_funcs
|
||||
from tests.kit.model_zoo import model_zoo, run_fwd_bwd
|
||||
|
||||
PLACEMENT_CONFIGS = [
|
||||
{"placement_policy": "static", "shard_param_frac": 0.0, "offload_optim_frac": 0.0}, # zero2
|
||||
@@ -32,14 +30,17 @@ PLACEMENT_CONFIGS = [
|
||||
]
|
||||
|
||||
# this model is large enough to slice to chunks
|
||||
TEST_MODELS = ["gpt2"]
|
||||
TEST_MODELS = ["transformers_gpt_lm"]
|
||||
# these models are too small, all parameters in these models are compacted into one chunk
|
||||
EXAMPLE_MODELS = ["albert", "beit", "bert", "hanging_param_model", "nested_model", "repeated_computed_layers"]
|
||||
EXAMPLE_MODELS = [
|
||||
"transformers_bert_for_sequence_classification",
|
||||
"custom_hanging_param_model",
|
||||
"custom_nested_model",
|
||||
"custom_repeated_computed_layers",
|
||||
]
|
||||
|
||||
# bfloat16 cannot represent them exactly
|
||||
BF16_IGNORED_KEYS = [
|
||||
"albert.embeddings.word_embeddings.weight",
|
||||
"albert.embeddings.position_embeddings.weight",
|
||||
"masked_bias",
|
||||
]
|
||||
|
||||
@@ -55,7 +56,7 @@ def check_param(model: GeminiDDP, torch_model: torch.nn.Module, dtype: torch.dty
|
||||
temp_zero_value = zero_dict[key].to(device=value.device)
|
||||
if dtype is torch.bfloat16 and any(k in key for k in BF16_IGNORED_KEYS):
|
||||
continue
|
||||
rtol, atol = 1e-3, 4e-3
|
||||
rtol, atol = 2e-3, 6e-3
|
||||
if dtype is torch.bfloat16:
|
||||
rtol, atol = 4e-3, 8e-3
|
||||
# debug_print([0], "max range: ", key, torch.max(torch.abs(value - temp_zero_value)))
|
||||
@@ -74,8 +75,9 @@ def check_param(model: GeminiDDP, torch_model: torch.nn.Module, dtype: torch.dty
|
||||
@parameterize("master_weights", [True, False])
|
||||
def exam_model_step(placement_config, model_name: str, mixed_precision: torch.dtype, master_weights: bool):
|
||||
set_seed(42)
|
||||
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
||||
model_builder, data_gen_fn, output_transform_fn, loss_fn, *_ = next(
|
||||
iter(model_zoo.get_sub_registry(model_name).values())
|
||||
)
|
||||
|
||||
torch_model = model_builder().cuda()
|
||||
# apex no master weights leads to nan, so we don't use it
|
||||
@@ -104,19 +106,20 @@ def exam_model_step(placement_config, model_name: str, mixed_precision: torch.dt
|
||||
torch_model.eval()
|
||||
|
||||
set_seed(dist.get_rank() * 3 + 128)
|
||||
rtol, atol = 1e-4, 1e-5
|
||||
for i, (input_ids, label) in enumerate(train_dataloader):
|
||||
rtol, atol = 4e-2, 4e-2
|
||||
train_dataloader = iter(DummyDataloader(data_gen_fn))
|
||||
for i, data in enumerate(train_dataloader):
|
||||
if i > 2:
|
||||
break
|
||||
input_ids, label = input_ids.cuda(), label.cuda()
|
||||
data = {k: v.cuda() if isinstance(v, torch.Tensor) else v for k, v in data.items()}
|
||||
zero_optim.zero_grad()
|
||||
torch_optim.zero_grad()
|
||||
|
||||
torch_loss = run_fwd_bwd(torch_model, input_ids, label, criterion, torch_optim)
|
||||
loss = run_fwd_bwd(model, input_ids, label, criterion, zero_optim)
|
||||
torch_loss = run_fwd_bwd(torch_model, data, output_transform_fn, loss_fn, optimizer=torch_optim)
|
||||
loss = run_fwd_bwd(model, data, output_transform_fn, loss_fn, optimizer=zero_optim)
|
||||
# as no master weights leads to error accumulation, we don't check the loss
|
||||
if master_weights:
|
||||
assert_close(torch_loss, loss, rtol=rtol, atol=atol)
|
||||
assert_close(torch_loss.float(), loss.float(), rtol=rtol, atol=atol)
|
||||
|
||||
zero_optim.step()
|
||||
torch_optim.step()
|
||||
@@ -125,13 +128,14 @@ def exam_model_step(placement_config, model_name: str, mixed_precision: torch.dt
|
||||
check_param(model, torch_model, mixed_precision)
|
||||
|
||||
|
||||
@parameterize("placement_config", PLACEMENT_CONFIGS)
|
||||
@parameterize("placement_config", [PLACEMENT_CONFIGS[3]])
|
||||
@parameterize("model_name", EXAMPLE_MODELS)
|
||||
@parameterize("mixed_precision", [torch.half, torch.bfloat16])
|
||||
@parameterize("mixed_precision", [torch.half])
|
||||
def exam_tiny_example(placement_config, model_name: str, mixed_precision: torch.dtype):
|
||||
set_seed(2008)
|
||||
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
||||
model_builder, data_gen_fn, output_transform_fn, loss_fn, *_ = next(
|
||||
iter(model_zoo.get_sub_registry(model_name).values())
|
||||
)
|
||||
|
||||
torch_model = model_builder().cuda()
|
||||
amp_config = dict(opt_level="O2", keep_batchnorm_fp32=False, loss_scale=2)
|
||||
@@ -159,26 +163,19 @@ def exam_tiny_example(placement_config, model_name: str, mixed_precision: torch.
|
||||
torch_model.eval()
|
||||
|
||||
set_seed(dist.get_rank() * 3 + 128)
|
||||
rtol, atol = 1.5e-6, 2e-5
|
||||
if mixed_precision is torch.bfloat16:
|
||||
rtol, atol = 2e-3, 2e-3
|
||||
elif Version(torch.__version__) >= Version("2.0.0"):
|
||||
rtol, atol = 4e-5, 3e-5
|
||||
|
||||
for i, (input_ids, label) in enumerate(train_dataloader):
|
||||
train_dataloader = DummyDataloader(data_gen_fn)
|
||||
for i, data in enumerate(train_dataloader):
|
||||
if i > 2:
|
||||
break
|
||||
|
||||
input_ids = input_ids.cuda()
|
||||
label = label.cuda()
|
||||
data = {k: v.cuda() if isinstance(v, torch.Tensor) else v for k, v in data.items()}
|
||||
|
||||
zero_optim.zero_grad()
|
||||
torch_optim.zero_grad()
|
||||
|
||||
torch_loss = run_fwd_bwd(torch_model, input_ids, label, criterion, torch_optim)
|
||||
loss = run_fwd_bwd(model, input_ids, label, criterion, zero_optim)
|
||||
assert_close(torch_loss, loss, rtol=rtol, atol=atol) # atol should be 2e-5 for torch lower than 1.12
|
||||
|
||||
run_fwd_bwd(torch_model, data, output_transform_fn, loss_fn, optimizer=torch_optim)
|
||||
run_fwd_bwd(model, data, output_transform_fn, loss_fn, optimizer=zero_optim)
|
||||
zero_optim.step()
|
||||
torch_optim.step()
|
||||
|
||||
|
@@ -4,10 +4,9 @@ import numpy as np
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from colossalai.testing import clear_cache_before_run
|
||||
from colossalai.testing import DummyDataloader, clear_cache_before_run
|
||||
from colossalai.zero.gemini.memory_tracer.runtime_mem_tracer import RuntimeMemTracer
|
||||
from tests.components_to_test import run_fwd_bwd
|
||||
from tests.components_to_test.registry import non_distributed_component_funcs
|
||||
from tests.kit.model_zoo import model_zoo, run_fwd_bwd
|
||||
|
||||
|
||||
@pytest.mark.skip("this is not used")
|
||||
@@ -16,21 +15,22 @@ def test_runtime_mem_tracer():
|
||||
test_models = ["gpt2", "bert", "simple_net", "repeated_computed_layers", "nested_model", "albert"]
|
||||
|
||||
for model_name in test_models:
|
||||
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||
model_builder, train_dataloader, _, _, criterion = get_components_func()
|
||||
model_builder, data_gen_fn, output_transform_fn, *_ = next(
|
||||
iter(model_zoo.get_sub_registry(model_name).values())
|
||||
)
|
||||
|
||||
model = model_builder(checkpoint=False).cuda()
|
||||
model = model_builder().cuda()
|
||||
|
||||
model_bk = deepcopy(model)
|
||||
runtime_mem_tracer = RuntimeMemTracer(model)
|
||||
|
||||
for i, (data, label) in enumerate(train_dataloader):
|
||||
train_dataloader = DummyDataloader(data_gen_fn)
|
||||
for i, data in enumerate(train_dataloader):
|
||||
if i > 1:
|
||||
break
|
||||
data = data.cuda()
|
||||
label = label.cuda()
|
||||
data = {k: v.cuda() if isinstance(v, torch.Tensor) else v for k, v in data.items()}
|
||||
|
||||
run_fwd_bwd(runtime_mem_tracer, data, label, criterion, optimizer=runtime_mem_tracer)
|
||||
run_fwd_bwd(runtime_mem_tracer, data, output_transform_fn, optimizer=runtime_mem_tracer)
|
||||
|
||||
for p1, p2 in zip(model_bk.parameters(), model.parameters()):
|
||||
torch.allclose(p1.to(torch.half), p2)
|
||||
|
@@ -5,40 +5,37 @@ import colossalai
|
||||
from colossalai.testing import rerun_if_address_is_in_use, spawn
|
||||
from colossalai.utils import get_current_device
|
||||
from colossalai.zero.gemini.chunk import init_chunk_manager, search_chunk_configuration
|
||||
from tests.components_to_test.registry import non_distributed_component_funcs
|
||||
from tests.kit.model_zoo import model_zoo
|
||||
|
||||
|
||||
def exam_search_chunk_size():
|
||||
world_size = torch.distributed.get_world_size()
|
||||
|
||||
get_components_func = non_distributed_component_funcs.get_callable("gpt2")
|
||||
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
||||
model_builder, data_gen_fn, output_transform_fn, *_ = next(
|
||||
iter(model_zoo.get_sub_registry("transformers_gpt_lm").values())
|
||||
)
|
||||
|
||||
# make sure torch_model and model has the same parameter values
|
||||
model = model_builder()
|
||||
config_dict, *_ = search_chunk_configuration(
|
||||
model, search_range_m=1, search_interval=16, min_chunk_size_m=0, filter_exlarge_params=True
|
||||
model, search_range_m=1, search_interval=128, min_chunk_size_m=0, filter_exlarge_params=True
|
||||
)
|
||||
|
||||
for key in config_dict:
|
||||
chunk_size = config_dict[key]["chunk_size"]
|
||||
if world_size == 1 or True:
|
||||
assert chunk_size == 31616
|
||||
else:
|
||||
assert chunk_size == 1024
|
||||
assert chunk_size == 527872
|
||||
|
||||
|
||||
def exam_chunk_manager():
|
||||
world_size = torch.distributed.get_world_size()
|
||||
|
||||
get_components_func = non_distributed_component_funcs.get_callable("gpt2")
|
||||
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
||||
model_builder, data_gen_fn, output_transform_fn, *_ = next(
|
||||
iter(model_zoo.get_sub_registry("transformers_gpt_lm").values())
|
||||
)
|
||||
|
||||
sharded_ddp_model = model_builder()
|
||||
chunk_manager = init_chunk_manager(
|
||||
sharded_ddp_model,
|
||||
get_current_device(),
|
||||
hidden_dim=16,
|
||||
hidden_dim=128,
|
||||
search_range_m=1,
|
||||
min_chunk_size_m=0,
|
||||
filter_exlarge_params=True,
|
||||
@@ -46,7 +43,7 @@ def exam_chunk_manager():
|
||||
)
|
||||
config_dict = chunk_manager.dp_degree_chunk_size_dict
|
||||
assert len(config_dict) == 1
|
||||
assert config_dict[world_size] == 31616
|
||||
assert config_dict[world_size] == 527872
|
||||
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
|
@@ -7,7 +7,7 @@ from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
|
||||
from colossalai.utils import set_seed
|
||||
from colossalai.zero import GeminiDDP
|
||||
from colossalai.zero.gemini.chunk import search_chunk_configuration
|
||||
from tests.components_to_test.registry import non_distributed_component_funcs
|
||||
from tests.kit.model_zoo import model_zoo
|
||||
|
||||
PLACEMENT_CONFIGS = [
|
||||
{"placement_policy": "static", "shard_param_frac": 0.0}, # zero2
|
||||
@@ -26,15 +26,16 @@ def ignore_the_first_parameter(model: torch.nn.Module):
|
||||
|
||||
@parameterize("placement_config", PLACEMENT_CONFIGS)
|
||||
@parameterize("keep_gathered", [True, False])
|
||||
@parameterize("model_name", ["gpt2", "bert"])
|
||||
@parameterize("model_name", ["transformers_gpt_lm", "transformers_bert_for_sequence_classification"])
|
||||
@parameterize("master_weights", [False, True])
|
||||
def exam_state_dict(placement_config, keep_gathered, model_name: str, master_weights: bool):
|
||||
set_seed(431)
|
||||
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
||||
model_builder, data_gen_fn, output_transform_fn, *_ = next(iter(model_zoo.get_sub_registry(model_name).values()))
|
||||
|
||||
model = model_builder()
|
||||
|
||||
model_size = sum(p.numel() * p.element_size() for p in model.parameters()) / 1024**2
|
||||
|
||||
torch_model = model_builder()
|
||||
for torch_p, p in zip(torch_model.parameters(), model.parameters()):
|
||||
torch_p.data.copy_(p.data)
|
||||
@@ -54,29 +55,7 @@ def exam_state_dict(placement_config, keep_gathered, model_name: str, master_wei
|
||||
temp_zero_value = zero_dict[key].to(device=value.device, dtype=value.dtype)
|
||||
assert_close(value, temp_zero_value, rtol=1e-3, atol=1e-5)
|
||||
|
||||
|
||||
@parameterize("placement_config", PLACEMENT_CONFIGS)
|
||||
@parameterize("keep_gathered", [True, False])
|
||||
@parameterize("model_name", ["gpt2", "bert"])
|
||||
@parameterize("master_weights", [False, True])
|
||||
def exam_load_state_dict(placement_config, keep_gathered, model_name: str, master_weights: bool):
|
||||
set_seed(431)
|
||||
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
||||
|
||||
model = model_builder()
|
||||
|
||||
set_seed(451)
|
||||
torch_model = model_builder() # get a different model
|
||||
|
||||
world_size = torch.distributed.get_world_size()
|
||||
config_dict, *_ = search_chunk_configuration(model, search_range_m=1, search_interval=100)
|
||||
config_dict[world_size]["chunk_size"] = 5000
|
||||
config_dict[world_size]["keep_gathered"] = keep_gathered
|
||||
|
||||
model = GeminiDDP(model, config_dict, **placement_config, pin_memory=True, master_weights=master_weights)
|
||||
|
||||
torch_dict = torch_model.state_dict()
|
||||
# check load state dict
|
||||
model.load_state_dict(torch_dict, strict=False)
|
||||
zero_dict = model.state_dict(only_rank_0=False)
|
||||
|
||||
@@ -85,23 +64,7 @@ def exam_load_state_dict(placement_config, keep_gathered, model_name: str, maste
|
||||
temp_zero_value = zero_dict[key].to(device=value.device, dtype=value.dtype)
|
||||
assert_close(value, temp_zero_value, rtol=1e-3, atol=1e-5)
|
||||
|
||||
|
||||
@parameterize("placement_config", PLACEMENT_CONFIGS)
|
||||
@parameterize("model_name", ["gpt2", "bert"])
|
||||
@parameterize("master_weights", [False, True])
|
||||
def exam_state_dict_shard(placement_config, model_name: str, master_weights: bool):
|
||||
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
||||
|
||||
model = model_builder()
|
||||
|
||||
model_size = sum(p.numel() * p.element_size() for p in model.parameters()) / 1024**2
|
||||
|
||||
config_dict, *_ = search_chunk_configuration(model, search_range_m=1, search_interval=100)
|
||||
model = GeminiDDP(model, config_dict, **placement_config, master_weights=master_weights)
|
||||
model.train()
|
||||
|
||||
zero_dict = model.state_dict(only_rank_0=False)
|
||||
# check state dict shard
|
||||
accumulated_keys = set()
|
||||
# ensure number of shards > 1
|
||||
for shard, _ in model.state_dict_shard(max_shard_size=(model_size / 3), only_rank_0=False):
|
||||
@@ -116,8 +79,6 @@ def run_dist(rank, world_size, port):
|
||||
config = {}
|
||||
colossalai.launch(config=config, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
||||
exam_state_dict()
|
||||
exam_load_state_dict()
|
||||
exam_state_dict_shard()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
|
@@ -8,7 +8,7 @@ from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
|
||||
from colossalai.utils import set_seed
|
||||
from colossalai.zero import GeminiDDP, GeminiOptimizer
|
||||
from colossalai.zero.gemini.chunk import search_chunk_configuration
|
||||
from tests.components_to_test.registry import non_distributed_component_funcs
|
||||
from tests.kit.model_zoo import model_zoo
|
||||
|
||||
PLACEMENT_CONFIGS = [
|
||||
{"placement_policy": "static", "shard_param_frac": 0.0, "offload_optim_frac": 0.0}, # zero2
|
||||
@@ -22,8 +22,9 @@ PLACEMENT_CONFIGS = [
|
||||
@parameterize("keep_gathered", [True, False])
|
||||
def exam_zero_optim_state_dict(placement_config, keep_gathered):
|
||||
set_seed(431)
|
||||
get_components_func = non_distributed_component_funcs.get_callable("gpt2")
|
||||
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
||||
model_builder, data_gen_fn, output_transform_fn, *_ = next(
|
||||
iter(model_zoo.get_sub_registry("transformers_gpt_lm").values())
|
||||
)
|
||||
|
||||
model = model_builder()
|
||||
|
||||
@@ -41,15 +42,15 @@ def exam_zero_optim_state_dict(placement_config, keep_gathered):
|
||||
|
||||
set_seed(dist.get_rank() * 3 + 128)
|
||||
model.train()
|
||||
for i, (input_ids, label) in enumerate(train_dataloader):
|
||||
if i > 0:
|
||||
break
|
||||
optim.zero_grad()
|
||||
logits = model(input_ids)
|
||||
logits = logits.float()
|
||||
loss = criterion(logits, input_ids)
|
||||
optim.backward(loss)
|
||||
optim.step()
|
||||
data = data_gen_fn()
|
||||
data = {k: v.cuda() if isinstance(v, torch.Tensor) else v for k, v in data.items()}
|
||||
|
||||
optim.zero_grad()
|
||||
outputs = model(**data)
|
||||
outputs = output_transform_fn(outputs)
|
||||
loss = next(iter(outputs.values())).sum()
|
||||
optim.backward(loss)
|
||||
optim.step()
|
||||
|
||||
optim_state_dict = optim.state_dict()
|
||||
optim.load_state_dict(optim_state_dict)
|
||||
|
Reference in New Issue
Block a user