mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-09 04:50:17 +00:00
[test] merge old components to test to model zoo (#4945)
* [test] add custom models in model zoo * [test] update legacy test * [test] update model zoo * [test] update gemini test * [test] remove components to test
This commit is contained in:
@@ -12,8 +12,7 @@ from colossalai.utils import set_seed
|
||||
from colossalai.utils.cuda import get_current_device
|
||||
from colossalai.zero import GeminiDDP, GeminiOptimizer
|
||||
from colossalai.zero.gemini.chunk import search_chunk_configuration
|
||||
from tests.components_to_test import run_fwd_bwd
|
||||
from tests.components_to_test.registry import non_distributed_component_funcs
|
||||
from tests.kit.model_zoo import model_zoo, run_fwd_bwd
|
||||
|
||||
PLACEMENT_CONFIGS = [
|
||||
{"placement_policy": "static", "shard_param_frac": 0.0}, # zero2
|
||||
@@ -38,7 +37,7 @@ def check_grad(model: GeminiDDP, torch_model: torch.nn.Module):
|
||||
|
||||
@parameterize("placement_config", PLACEMENT_CONFIGS)
|
||||
@parameterize("keep_gather", [False, True])
|
||||
@parameterize("model_name", ["gpt2", "bert"])
|
||||
@parameterize("model_name", ["transformers_gpt_lm"])
|
||||
@parameterize("use_grad_checkpoint", [False, True])
|
||||
@parameterize("master_weights", [False, True])
|
||||
def exam_gpt_fwd_bwd(
|
||||
@@ -49,17 +48,22 @@ def exam_gpt_fwd_bwd(
|
||||
master_weights: bool = True,
|
||||
):
|
||||
init_device = get_current_device()
|
||||
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
||||
model_builder, data_gen_fn, output_transform_fn, loss_fn, *_ = next(
|
||||
iter(model_zoo.get_sub_registry(model_name).values())
|
||||
)
|
||||
|
||||
set_seed(42)
|
||||
model = model_builder(use_grad_checkpoint)
|
||||
model = model_builder()
|
||||
|
||||
set_seed(42)
|
||||
torch_model = model_builder(use_grad_checkpoint).cuda()
|
||||
torch_model = model_builder().cuda()
|
||||
for torch_p, p in zip(torch_model.parameters(), model.parameters()):
|
||||
torch_p.data.copy_(p.data)
|
||||
|
||||
if use_grad_checkpoint:
|
||||
model.gradient_checkpointing_enable()
|
||||
torch_model.gradient_checkpointing_enable()
|
||||
|
||||
world_size = torch.distributed.get_world_size()
|
||||
config_dict, *_ = search_chunk_configuration(model, search_range_m=1, search_interval=100)
|
||||
config_dict[world_size]["chunk_size"] = 5000
|
||||
@@ -77,25 +81,22 @@ def exam_gpt_fwd_bwd(
|
||||
torch_model = DDP(torch_model, device_ids=[rank])
|
||||
|
||||
set_seed(rank)
|
||||
for i, (input_ids, label) in enumerate(train_dataloader):
|
||||
# you can only test a single fwd + bwd.
|
||||
# after bwd param is grad for Gemini, due to the chunk reuse optimization.
|
||||
if i > 0:
|
||||
break
|
||||
input_ids, label = input_ids.cuda(), label.cuda()
|
||||
|
||||
torch_optim.zero_grad()
|
||||
zero_optim.zero_grad()
|
||||
data = data_gen_fn()
|
||||
data = {k: v.cuda() if isinstance(v, torch.Tensor) else v for k, v in data.items()}
|
||||
|
||||
# set random seed is same as torch_model.eval()
|
||||
set_seed(42)
|
||||
torch_loss = run_fwd_bwd(torch_model, input_ids, label, criterion, torch_optim)
|
||||
set_seed(42)
|
||||
loss = run_fwd_bwd(model, input_ids, label, criterion, zero_optim)
|
||||
torch_optim.zero_grad()
|
||||
zero_optim.zero_grad()
|
||||
|
||||
assert torch.equal(torch_loss, loss)
|
||||
# set random seed is same as torch_model.eval()
|
||||
set_seed(42)
|
||||
torch_loss = run_fwd_bwd(torch_model, data, output_transform_fn, loss_fn, optimizer=torch_optim)
|
||||
set_seed(42)
|
||||
loss = run_fwd_bwd(model, data, output_transform_fn, loss_fn, optimizer=zero_optim)
|
||||
|
||||
check_grad(model, torch_model)
|
||||
assert_close(torch_loss.float(), loss.float())
|
||||
|
||||
check_grad(model, torch_model)
|
||||
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
|
Reference in New Issue
Block a user