[test] merge old components to test to model zoo (#4945)

* [test] add custom models in model zoo

* [test] update legacy test

* [test] update model zoo

* [test] update gemini test

* [test] remove components to test
This commit is contained in:
Hongxin Liu
2023-10-20 10:35:08 +08:00
committed by GitHub
parent 3a41e8304e
commit b8e770c832
49 changed files with 461 additions and 914 deletions

View File

@@ -7,13 +7,12 @@ from torch.testing import assert_close
import colossalai
from colossalai.nn.optimizer import HybridAdam
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
from colossalai.testing import DummyDataloader, parameterize, rerun_if_address_is_in_use, spawn
from colossalai.utils import set_seed
from colossalai.utils.cuda import get_current_device
from colossalai.zero import GeminiDDP, GeminiOptimizer
from colossalai.zero.gemini.chunk import search_chunk_configuration
from tests.components_to_test import run_fwd
from tests.components_to_test.registry import non_distributed_component_funcs
from tests.kit.model_zoo import model_zoo, run_fwd
PLACEMENT_CONFIGS = [
{"placement_policy": "static", "shard_param_frac": 0.0}, # zero2
@@ -38,7 +37,7 @@ def check_grad(model: GeminiDDP, torch_model: torch.nn.Module):
# Compare gradients.
for p0, p1 in zip(model.parameters(), torch_model.parameters()):
assert_close(p0, p1.grad, rtol=1e-3, atol=5e-5)
assert_close(p0, p1.grad, rtol=2e-3, atol=2e-2)
# Release gradient chunks and move them to gradient device.
for grad_chunk, device in zip(grad_chunk_list, device_list):
@@ -48,21 +47,19 @@ def check_grad(model: GeminiDDP, torch_model: torch.nn.Module):
@parameterize("placement_config", PLACEMENT_CONFIGS)
@parameterize("keep_gathered", [False, True])
@parameterize("model_name", ["gpt2", "bert"])
@parameterize("use_grad_checkpoint", [False, True])
@parameterize("model_name", ["transformers_gpt_lm"])
@parameterize("master_weights", [False, True])
def exam_gemini_grad_acc(
placement_config, keep_gathered: bool, model_name: str, use_grad_checkpoint: bool, master_weights: bool
):
def exam_gemini_grad_acc(placement_config, keep_gathered: bool, model_name: str, master_weights: bool):
init_device = get_current_device()
get_components_func = non_distributed_component_funcs.get_callable(model_name)
model_builder, train_dataloader, _, _, criterion = get_components_func()
model_builder, data_gen_fn, output_transform_fn, loss_fn, *_ = next(
iter(model_zoo.get_sub_registry(model_name).values())
)
set_seed(42)
gemini_model = model_builder(use_grad_checkpoint)
gemini_model = model_builder()
set_seed(42)
torch_model = model_builder(use_grad_checkpoint).cuda()
torch_model = model_builder().cuda()
for torch_p, p in zip(torch_model.parameters(), gemini_model.parameters()):
torch_p.data.copy_(p.data)
@@ -94,22 +91,23 @@ def exam_gemini_grad_acc(
set_seed(rank)
accum_iter = 4
for i, (input_ids, label) in enumerate(train_dataloader):
train_dataloader = DummyDataloader(data_gen_fn)
for i, data in enumerate(train_dataloader):
delay_unscale = False if (i + 1) % accum_iter == 0 else True
input_ids, label = input_ids.cuda(), label.cuda()
data = {k: v.cuda() if isinstance(v, torch.Tensor) else v for k, v in data.items()}
set_seed(42 + rank)
torch_loss = run_fwd(torch_model, input_ids, label, criterion)
torch_loss = run_fwd(torch_model, data, output_transform_fn, loss_fn)
torch_loss = torch_loss / accum_iter
with amp.scale_loss(torch_loss, torch_optim, delay_unscale=delay_unscale) as scaled_loss:
scaled_loss.backward()
set_seed(42 + rank)
gemini_loss = run_fwd(gemini_model, input_ids, label, criterion)
gemini_loss = run_fwd(gemini_model, data, output_transform_fn, loss_fn)
gemini_loss = gemini_loss / accum_iter
gemini_optim.backward(gemini_loss)
assert torch.allclose(torch_loss, gemini_loss, rtol=1e-3, atol=1e-5)
assert torch.allclose(torch_loss.float(), gemini_loss.float(), rtol=1e-3, atol=1e-5)
check_grad(gemini_model, torch_model)