mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-05 19:13:01 +00:00
[test] merge old components to test to model zoo (#4945)
* [test] add custom models in model zoo * [test] update legacy test * [test] update model zoo * [test] update gemini test * [test] remove components to test
This commit is contained in:
@@ -9,13 +9,12 @@ from torch.testing import assert_close
|
||||
import colossalai
|
||||
from colossalai.legacy.amp import convert_to_apex_amp
|
||||
from colossalai.nn.optimizer import HybridAdam
|
||||
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
|
||||
from colossalai.testing import DummyDataloader, parameterize, rerun_if_address_is_in_use, spawn
|
||||
from colossalai.utils import set_seed
|
||||
from colossalai.utils.cuda import get_current_device
|
||||
from colossalai.zero import GeminiDDP, GeminiOptimizer
|
||||
from colossalai.zero.gemini.chunk import search_chunk_configuration
|
||||
from tests.components_to_test import run_fwd_bwd
|
||||
from tests.components_to_test.registry import non_distributed_component_funcs
|
||||
from tests.kit.model_zoo import model_zoo, run_fwd, run_fwd_bwd
|
||||
|
||||
PLACEMENT_CONFIGS = [
|
||||
{"placement_policy": "static", "shard_param_frac": 0.0}, # zero2
|
||||
@@ -53,12 +52,11 @@ def single_chunk_init(model: torch.nn.Module, placement_config: dict):
|
||||
|
||||
|
||||
@parameterize("placement_config", PLACEMENT_CONFIGS)
|
||||
@parameterize("model_name", ["gpt2"])
|
||||
@parameterize("model_name", ["transformers_gpt_lm"])
|
||||
@parameterize("model_init_func", [single_chunk_init, multi_chunk_init])
|
||||
def exam_inference(placement_config: dict, model_name: str, model_init_func: Callable):
|
||||
set_seed(19360226)
|
||||
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
||||
model_builder, data_gen_fn, output_transform_fn, *_ = next(iter(model_zoo.get_sub_registry(model_name).values()))
|
||||
|
||||
torch_model = model_builder().cuda()
|
||||
amp_config = dict(opt_level="O2", keep_batchnorm_fp32=False, loss_scale=128)
|
||||
@@ -79,29 +77,27 @@ def exam_inference(placement_config: dict, model_name: str, model_init_func: Cal
|
||||
torch_model.eval()
|
||||
|
||||
set_seed(dist.get_rank() * 3 + 128)
|
||||
train_dataloader = iter(train_dataloader)
|
||||
train_dataloader = iter(DummyDataloader(data_gen_fn))
|
||||
|
||||
def train_iter():
|
||||
input_ids, label = next(train_dataloader)
|
||||
input_ids, label = input_ids.cuda(), label.cuda()
|
||||
data = next(train_dataloader)
|
||||
data = {k: v.cuda() if isinstance(v, torch.Tensor) else v for k, v in data.items()}
|
||||
zero_optim.zero_grad()
|
||||
torch_optim.zero_grad()
|
||||
torch_loss = run_fwd_bwd(torch_model, input_ids, label, criterion, torch_optim)
|
||||
loss = run_fwd_bwd(model, input_ids, label, criterion, zero_optim)
|
||||
assert_close(torch_loss, loss, rtol=1e-5, atol=1e-5)
|
||||
torch_loss = run_fwd_bwd(torch_model, data, output_transform_fn, optimizer=torch_optim)
|
||||
loss = run_fwd_bwd(model, data, output_transform_fn, optimizer=zero_optim)
|
||||
assert_close(torch_loss.float(), loss.float(), rtol=1e-5, atol=1e-5)
|
||||
zero_optim.step()
|
||||
torch_optim.step()
|
||||
check_param(model, torch_model)
|
||||
|
||||
def inference_iter():
|
||||
input_ids, label = next(train_dataloader)
|
||||
input_ids, label = input_ids.cuda(), label.cuda()
|
||||
data = next(train_dataloader)
|
||||
data = {k: v.cuda() if isinstance(v, torch.Tensor) else v for k, v in data.items()}
|
||||
with torch.no_grad():
|
||||
torch_output = torch_model(input_ids)
|
||||
torch_loss = criterion(torch_output.float(), label)
|
||||
zero_output = model(input_ids)
|
||||
zero_loss = criterion(zero_output.float(), label)
|
||||
assert_close(torch_loss, zero_loss)
|
||||
torch_loss = run_fwd(torch_model, data, output_transform_fn)
|
||||
zero_loss = run_fwd(model, data, output_transform_fn)
|
||||
assert_close(torch_loss.float(), zero_loss.float(), rtol=1e-5, atol=1e-5)
|
||||
|
||||
train_iter()
|
||||
inference_iter()
|
||||
|
Reference in New Issue
Block a user