[test] merge old components to test to model zoo (#4945)

* [test] add custom models in model zoo

* [test] update legacy test

* [test] update model zoo

* [test] update gemini test

* [test] remove components to test
This commit is contained in:
Hongxin Liu
2023-10-20 10:35:08 +08:00
committed by GitHub
parent 3a41e8304e
commit b8e770c832
49 changed files with 461 additions and 914 deletions

View File

@@ -9,13 +9,12 @@ from torch.testing import assert_close
import colossalai
from colossalai.legacy.amp import convert_to_apex_amp
from colossalai.nn.optimizer import HybridAdam
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
from colossalai.testing import DummyDataloader, parameterize, rerun_if_address_is_in_use, spawn
from colossalai.utils import set_seed
from colossalai.utils.cuda import get_current_device
from colossalai.zero import GeminiDDP, GeminiOptimizer
from colossalai.zero.gemini.chunk import search_chunk_configuration
from tests.components_to_test import run_fwd_bwd
from tests.components_to_test.registry import non_distributed_component_funcs
from tests.kit.model_zoo import model_zoo, run_fwd, run_fwd_bwd
PLACEMENT_CONFIGS = [
{"placement_policy": "static", "shard_param_frac": 0.0}, # zero2
@@ -53,12 +52,11 @@ def single_chunk_init(model: torch.nn.Module, placement_config: dict):
@parameterize("placement_config", PLACEMENT_CONFIGS)
@parameterize("model_name", ["gpt2"])
@parameterize("model_name", ["transformers_gpt_lm"])
@parameterize("model_init_func", [single_chunk_init, multi_chunk_init])
def exam_inference(placement_config: dict, model_name: str, model_init_func: Callable):
set_seed(19360226)
get_components_func = non_distributed_component_funcs.get_callable(model_name)
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
model_builder, data_gen_fn, output_transform_fn, *_ = next(iter(model_zoo.get_sub_registry(model_name).values()))
torch_model = model_builder().cuda()
amp_config = dict(opt_level="O2", keep_batchnorm_fp32=False, loss_scale=128)
@@ -79,29 +77,27 @@ def exam_inference(placement_config: dict, model_name: str, model_init_func: Cal
torch_model.eval()
set_seed(dist.get_rank() * 3 + 128)
train_dataloader = iter(train_dataloader)
train_dataloader = iter(DummyDataloader(data_gen_fn))
def train_iter():
input_ids, label = next(train_dataloader)
input_ids, label = input_ids.cuda(), label.cuda()
data = next(train_dataloader)
data = {k: v.cuda() if isinstance(v, torch.Tensor) else v for k, v in data.items()}
zero_optim.zero_grad()
torch_optim.zero_grad()
torch_loss = run_fwd_bwd(torch_model, input_ids, label, criterion, torch_optim)
loss = run_fwd_bwd(model, input_ids, label, criterion, zero_optim)
assert_close(torch_loss, loss, rtol=1e-5, atol=1e-5)
torch_loss = run_fwd_bwd(torch_model, data, output_transform_fn, optimizer=torch_optim)
loss = run_fwd_bwd(model, data, output_transform_fn, optimizer=zero_optim)
assert_close(torch_loss.float(), loss.float(), rtol=1e-5, atol=1e-5)
zero_optim.step()
torch_optim.step()
check_param(model, torch_model)
def inference_iter():
input_ids, label = next(train_dataloader)
input_ids, label = input_ids.cuda(), label.cuda()
data = next(train_dataloader)
data = {k: v.cuda() if isinstance(v, torch.Tensor) else v for k, v in data.items()}
with torch.no_grad():
torch_output = torch_model(input_ids)
torch_loss = criterion(torch_output.float(), label)
zero_output = model(input_ids)
zero_loss = criterion(zero_output.float(), label)
assert_close(torch_loss, zero_loss)
torch_loss = run_fwd(torch_model, data, output_transform_fn)
zero_loss = run_fwd(model, data, output_transform_fn)
assert_close(torch_loss.float(), zero_loss.float(), rtol=1e-5, atol=1e-5)
train_iter()
inference_iter()