mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-03 10:06:44 +00:00
[doc] Fix typo under colossalai and doc(#3618)
* Fixed several spelling errors under colossalai * Fix the spelling error in colossalai and docs directory * Cautious Changed the spelling error under the example folder * Update runtime_preparation_pass.py revert autograft to autograd * Update search_chunk.py utile to until * Update check_installation.py change misteach to mismatch in line 91 * Update 1D_tensor_parallel.md revert to perceptron * Update 2D_tensor_parallel.md revert to perceptron in line 73 * Update 2p5D_tensor_parallel.md revert to perceptron in line 71 * Update 3D_tensor_parallel.md revert to perceptron in line 80 * Update README.md revert to resnet in line 42 * Update reorder_graph.py revert to indice in line 7 * Update p2p.py revert to megatron in line 94 * Update initialize.py revert to torchrun in line 198 * Update routers.py change to detailed in line 63 * Update routers.py change to detailed in line 146 * Update README.md revert random number in line 402
This commit is contained in:
@@ -149,7 +149,7 @@ def size_value_converting_pass(gm: torch.fx.GraphModule, device_mesh: DeviceMesh
|
||||
|
||||
def _extract_target_dim(node):
|
||||
'''
|
||||
A helper function to etract the target dimension from size node.
|
||||
A helper function to extract the target dimension from size node.
|
||||
There are two usages of torch.Tensor.size:
|
||||
1. tensor.size()
|
||||
2. tensor.size(dim)
|
||||
@@ -427,7 +427,7 @@ def module_params_sharding_pass(gm: torch.fx.GraphModule, device_mesh: DeviceMes
|
||||
if target_sharding_spec.dim_partition_dict != {}:
|
||||
origin_sharding_spec = ShardingSpec(device_mesh, param.shape, {})
|
||||
setattr(param, 'sharding_spec', origin_sharding_spec)
|
||||
# TODO: build a ColoParamter class to manager the distributed parameters
|
||||
# TODO: build a ColoParameter class to manager the distributed parameters
|
||||
# we could use .data here, because all the operations just happen before the real training
|
||||
# loop, so we don't need to track these operations in the autograd graph.
|
||||
param = torch.nn.Parameter(
|
||||
|
Reference in New Issue
Block a user