[doc] Fix typo under colossalai and doc(#3618)

* Fixed several spelling errors under colossalai

* Fix the spelling error in colossalai and docs directory

* Cautious Changed the spelling error under the example folder

* Update runtime_preparation_pass.py

revert autograft to autograd

* Update search_chunk.py

utile to until

* Update check_installation.py

change misteach to mismatch in line 91

* Update 1D_tensor_parallel.md

revert to perceptron

* Update 2D_tensor_parallel.md

revert to perceptron in line 73

* Update 2p5D_tensor_parallel.md

revert to perceptron in line 71

* Update 3D_tensor_parallel.md

revert to perceptron in line 80

* Update README.md

revert to resnet in line 42

* Update reorder_graph.py

revert to indice in line 7

* Update p2p.py

revert to megatron in line 94

* Update initialize.py

revert to torchrun in line 198

* Update routers.py

change to detailed in line 63

* Update routers.py

change to detailed in line 146

* Update README.md

revert  random number in line 402
This commit is contained in:
digger-yu
2023-04-26 11:38:43 +08:00
committed by GitHub
parent e1b0a78afa
commit b9a8dff7e5
72 changed files with 158 additions and 158 deletions

View File

@@ -89,7 +89,7 @@ def load_checkpoint(path: str,
torch_load_kwargs: (dict, optional): The kwargs of torch.load inside the function
load_state_dict_kwargs (dict, optional): The kwargs of load_state_dict inside the function
"""
# initialize the default paramters
# initialize the default parameters
if not torch_load_kwargs:
torch_load_kwargs = dict()
if not load_state_dict_kwargs:

View File

@@ -34,7 +34,7 @@ def gather_tensor(colo_tensor: ColoTensor) -> None:
dist.barrier()
if dist.get_rank() == 0:
setattr(colo_tensor, 'save_ready', True) # set saving signitrue
setattr(colo_tensor, 'save_ready', True) # set saving signature
def scatter_tensor(colo_tensor: ColoTensor, dist_spec: _DistSpec) -> None:

View File

@@ -38,7 +38,7 @@ def sync_moe_model_param(model: nn.Module):
param_dict = get_moe_epsize_param_dict(model)
# synchrosize the parameters whose dp_group is the whole world
# synchronize the parameters whose dp_group is the whole world
if 1 in param_dict:
src_rank = gpc.get_ranks_in_group(ParallelMode.DATA)[0]
for param in param_dict[1]: