mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-05 11:02:05 +00:00
[doc] Fix typo under colossalai and doc(#3618)
* Fixed several spelling errors under colossalai * Fix the spelling error in colossalai and docs directory * Cautious Changed the spelling error under the example folder * Update runtime_preparation_pass.py revert autograft to autograd * Update search_chunk.py utile to until * Update check_installation.py change misteach to mismatch in line 91 * Update 1D_tensor_parallel.md revert to perceptron * Update 2D_tensor_parallel.md revert to perceptron in line 73 * Update 2p5D_tensor_parallel.md revert to perceptron in line 71 * Update 3D_tensor_parallel.md revert to perceptron in line 80 * Update README.md revert to resnet in line 42 * Update reorder_graph.py revert to indice in line 7 * Update p2p.py revert to megatron in line 94 * Update initialize.py revert to torchrun in line 198 * Update routers.py change to detailed in line 63 * Update routers.py change to detailed in line 146 * Update README.md revert random number in line 402
This commit is contained in:
@@ -4,7 +4,7 @@ Colossal-Auto simplifies the process of deploying large-scale machine learning m
|
||||
|
||||
### 1. Basic usage
|
||||
|
||||
Colossal-Auto can be used to find a hybrid SPMD parallel strategy includes data, tensor(i.e., 1D, 2D, sequencial) for each operation. You can follow the [GPT example](https://github.com/hpcaitech/ColossalAI/tree/main/examples/language/gpt/experiments/auto_parallel).
|
||||
Colossal-Auto can be used to find a hybrid SPMD parallel strategy includes data, tensor(i.e., 1D, 2D, sequential) for each operation. You can follow the [GPT example](https://github.com/hpcaitech/ColossalAI/tree/main/examples/language/gpt/experiments/auto_parallel).
|
||||
Detailed instructions can be found in its `README.md`.
|
||||
|
||||
### 2. Integration with activation checkpoint
|
||||
|
Reference in New Issue
Block a user