[doc] Fix typo under colossalai and doc(#3618)

* Fixed several spelling errors under colossalai

* Fix the spelling error in colossalai and docs directory

* Cautious Changed the spelling error under the example folder

* Update runtime_preparation_pass.py

revert autograft to autograd

* Update search_chunk.py

utile to until

* Update check_installation.py

change misteach to mismatch in line 91

* Update 1D_tensor_parallel.md

revert to perceptron

* Update 2D_tensor_parallel.md

revert to perceptron in line 73

* Update 2p5D_tensor_parallel.md

revert to perceptron in line 71

* Update 3D_tensor_parallel.md

revert to perceptron in line 80

* Update README.md

revert to resnet in line 42

* Update reorder_graph.py

revert to indice in line 7

* Update p2p.py

revert to megatron in line 94

* Update initialize.py

revert to torchrun in line 198

* Update routers.py

change to detailed in line 63

* Update routers.py

change to detailed in line 146

* Update README.md

revert  random number in line 402
This commit is contained in:
digger-yu
2023-04-26 11:38:43 +08:00
committed by GitHub
parent e1b0a78afa
commit b9a8dff7e5
72 changed files with 158 additions and 158 deletions

View File

@@ -40,7 +40,7 @@ class DataLoaderX(DataLoader):
# A custom data loader class that inherits from DataLoader
def __iter__(self):
# Overriding the __iter__ method of DataLoader to return a BackgroundGenerator
#This is to enable data laoding in the background to improve training performance
#This is to enable data loading in the background to improve training performance
return BackgroundGenerator(super().__iter__())
@@ -60,7 +60,7 @@ def get_parser(**parser_kwargs):
# Create an ArgumentParser object with specifies kwargs
parser = argparse.ArgumentParser(**parser_kwargs)
# Add vairous command line arguments with their default balues and descriptions
# Add various command line arguments with their default values and descriptions
parser.add_argument(
"-n",
"--name",
@@ -162,7 +162,7 @@ def get_parser(**parser_kwargs):
# A function that returns the non-default arguments between two objects
def nondefault_trainer_args(opt):
# create an argument parsser
# create an argument parser
parser = argparse.ArgumentParser()
# add pytorch lightning trainer default arguments
parser = Trainer.add_argparse_args(parser)
@@ -203,7 +203,7 @@ def worker_init_fn(_):
else:
return np.random.seed(np.random.get_state()[1][0] + worker_id)
#Provide functionality for creating data loadedrs based on provided dataset configurations
#Provide functionality for creating data loaders based on provided dataset configurations
class DataModuleFromConfig(pl.LightningDataModule):
def __init__(self,
@@ -255,7 +255,7 @@ class DataModuleFromConfig(pl.LightningDataModule):
def _train_dataloader(self):
#Check if the train dataset is iterable
is_iterable_dataset = isinstance(self.datasets['train'], Txt2ImgIterableBaseDataset)
#Set the worker initialization function of the dataset isiterable or use_worker_init_fn is True
#Set the worker initialization function of the dataset is iterable or use_worker_init_fn is True
if is_iterable_dataset or self.use_worker_init_fn:
init_fn = worker_init_fn
else:
@@ -310,7 +310,7 @@ class DataModuleFromConfig(pl.LightningDataModule):
class SetupCallback(Callback):
# I nitialize the callback with the necessary parameters
# Initialize the callback with the necessary parameters
def __init__(self, resume, now, logdir, ckptdir, cfgdir, config, lightning_config):
super().__init__()
@@ -371,7 +371,7 @@ class SetupCallback(Callback):
# trainer.save_checkpoint(ckpt_path)
# PyTorch Lightning callback for ogging images during training and validation of a deep learning model
# PyTorch Lightning callback for logging images during training and validation of a deep learning model
class ImageLogger(Callback):
def __init__(self,
@@ -379,10 +379,10 @@ class ImageLogger(Callback):
max_images, # Maximum number of images to log
clamp=True, # Whether to clamp pixel values to [-1,1]
increase_log_steps=True, # Whether to increase frequency of log steps exponentially
rescale=True, # Whetehr to rescale pixel values to [0,1]
rescale=True, # Whether to rescale pixel values to [0,1]
disabled=False, # Whether to disable logging
log_on_batch_idx=False, # Whether to log on baych index instead of global step
log_first_step=False, # Whetehr to log on the first step
log_on_batch_idx=False, # Whether to log on batch index instead of global step
log_first_step=False, # Whether to log on the first step
log_images_kwargs=None): # Additional keyword arguments to pass to log_images method
super().__init__()
self.rescale = rescale
@@ -593,7 +593,7 @@ if __name__ == "__main__":
parser = Trainer.add_argparse_args(parser)
opt, unknown = parser.parse_known_args()
# Veirfy the arguments are both specified
# Verify the arguments are both specified
if opt.name and opt.resume:
raise ValueError("-n/--name and -r/--resume cannot be specified both."
"If you want to resume training in a new log folder, "
@@ -646,7 +646,7 @@ if __name__ == "__main__":
# Sets the seed for the random number generator to ensure reproducibility
seed_everything(opt.seed)
# Intinalize and save configuratioon using teh OmegaConf library.
# Initialize and save configuration using teh OmegaConf library.
try:
# init and save configs
configs = [OmegaConf.load(cfg) for cfg in opt.base]