mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-02 17:46:42 +00:00
[hotfix] set return_outputs=False in examples and polish code (#5404)
* fix: simplify merge_batch * fix: use return_outputs=False to eliminate extra memory consumption * feat: add return_outputs warning * style: remove `return_outputs=False` as it is the default value
This commit is contained in:
@@ -120,7 +120,7 @@ def main():
|
||||
# run pipeline forward backward
|
||||
batch = iter([batch])
|
||||
outputs = booster.execute_pipeline(
|
||||
batch, model, criterion, optimizer, return_loss=True, return_outputs=True
|
||||
batch, model, criterion, optimizer, return_loss=True
|
||||
)
|
||||
else:
|
||||
outputs = model(**batch)
|
||||
|
@@ -148,7 +148,7 @@ def train_epoch(
|
||||
for _ in pbar:
|
||||
if use_pipeline:
|
||||
outputs = booster.execute_pipeline(
|
||||
train_dataloader_iter, model, _criterion, optimizer, return_loss=True, return_outputs=True
|
||||
train_dataloader_iter, model, _criterion, optimizer, return_loss=True
|
||||
)
|
||||
# Backward and optimize
|
||||
if is_pp_last_device:
|
||||
|
@@ -145,7 +145,7 @@ def train_epoch(
|
||||
for _ in pbar:
|
||||
if use_pipeline:
|
||||
outputs = booster.execute_pipeline(
|
||||
train_dataloader_iter, model, _criterion, optimizer, return_loss=True, return_outputs=True
|
||||
train_dataloader_iter, model, _criterion, optimizer, return_loss=True
|
||||
)
|
||||
# Backward and optimize
|
||||
if is_pp_last_stage:
|
||||
|
@@ -271,7 +271,7 @@ def main():
|
||||
for step in pbar:
|
||||
if use_pipeline:
|
||||
outputs = booster.execute_pipeline(
|
||||
dataloader_iter, model, _criterion, optimizer, return_loss=True, return_outputs=True
|
||||
dataloader_iter, model, _criterion, optimizer, return_loss=True
|
||||
)
|
||||
loss = outputs["loss"]
|
||||
else:
|
||||
|
@@ -185,7 +185,7 @@ def main():
|
||||
microbatch_size=1,
|
||||
enable_jit_fused=False,
|
||||
zero_stage=0,
|
||||
precision="fp32",
|
||||
precision=args.mixed_precision,
|
||||
initial_scale=1,
|
||||
)
|
||||
else:
|
||||
@@ -286,7 +286,7 @@ def main():
|
||||
for step in pbar:
|
||||
if use_pipeline:
|
||||
outputs = booster.execute_pipeline(
|
||||
dataloader_iter, model, _criterion, optimizer, return_loss=True, return_outputs=True
|
||||
dataloader_iter, model, _criterion, optimizer, return_loss=True
|
||||
)
|
||||
loss = outputs["loss"]
|
||||
else:
|
||||
|
@@ -270,7 +270,6 @@ def main():
|
||||
lambda x, y: x.loss,
|
||||
optimizer,
|
||||
return_loss=True,
|
||||
return_outputs=True,
|
||||
)
|
||||
# Backward and optimize
|
||||
if is_pp_last_stage:
|
||||
|
@@ -340,7 +340,6 @@ def main():
|
||||
lambda x, y: x.loss,
|
||||
optimizer,
|
||||
return_loss=True,
|
||||
return_outputs=True,
|
||||
)
|
||||
# Backward and optimize
|
||||
if is_pp_last_stage:
|
||||
|
@@ -42,7 +42,7 @@ def train_epoch(epoch, model, optimizer, _criterion, lr_scheduler, dataloader, b
|
||||
for _ in pbar:
|
||||
if use_pipeline:
|
||||
outputs = booster.execute_pipeline(
|
||||
dataloader, model, _criterion, optimizer, return_loss=True, return_outputs=True
|
||||
dataloader, model, _criterion, optimizer, return_loss=True
|
||||
)
|
||||
# Backward and optimize
|
||||
if is_pp_last_stage:
|
||||
|
Reference in New Issue
Block a user