mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-26 04:03:58 +00:00
optimize engine and trainer test (#448)
This commit is contained in:
@@ -7,10 +7,8 @@ import pytest
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
import torch.multiprocessing as mp
|
||||
from colossalai.communication import (recv_backward, recv_forward,
|
||||
recv_tensor_meta, send_backward,
|
||||
send_backward_recv_forward, send_forward,
|
||||
send_forward_recv_backward,
|
||||
from colossalai.communication import (recv_backward, recv_forward, recv_tensor_meta, send_backward,
|
||||
send_backward_recv_forward, send_forward, send_forward_recv_backward,
|
||||
send_tensor_meta)
|
||||
from colossalai.context.parallel_mode import ParallelMode
|
||||
from colossalai.core import global_context as gpc
|
||||
@@ -18,17 +16,11 @@ from colossalai.initialize import launch
|
||||
from colossalai.logging import get_dist_logger
|
||||
from colossalai.utils import free_port, get_current_device
|
||||
|
||||
BATCH_SIZE = 16
|
||||
SEQ_LENGTH = 64
|
||||
HIDDEN_SIZE = 128
|
||||
BATCH_SIZE = 4
|
||||
SEQ_LENGTH = 2
|
||||
HIDDEN_SIZE = 16
|
||||
|
||||
CONFIG = dict(
|
||||
parallel=dict(
|
||||
pipeline=dict(size=4),
|
||||
tensor=dict(size=1, mode=None)
|
||||
),
|
||||
seed=1024
|
||||
)
|
||||
CONFIG = dict(parallel=dict(pipeline=dict(size=4), tensor=dict(size=1, mode=None)), seed=1024)
|
||||
|
||||
|
||||
def check_equal(A, B):
|
||||
@@ -41,8 +33,7 @@ def check_forward(output_tensor, rank, logger):
|
||||
tensor = output_tensor.clone()
|
||||
else:
|
||||
tensor = recv_forward(output_tensor.shape)
|
||||
logger.info('Rank {} received forward. Correct tensor: {}'.format(
|
||||
rank, check_equal(tensor, output_tensor)))
|
||||
logger.info('Rank {} received forward. Correct tensor: {}'.format(rank, check_equal(tensor, output_tensor)))
|
||||
if not gpc.is_last_rank(ParallelMode.PIPELINE):
|
||||
send_forward(tensor)
|
||||
logger.info('Rank {} sent forward.'.format(rank))
|
||||
@@ -54,8 +45,7 @@ def check_backward(output_grad, rank, logger):
|
||||
grad = output_grad.clone()
|
||||
else:
|
||||
grad = recv_backward(output_grad.shape)
|
||||
logger.info('Rank {} received backward. Correct grad: {}'.format(
|
||||
rank, check_equal(grad, output_grad)))
|
||||
logger.info('Rank {} received backward. Correct grad: {}'.format(rank, check_equal(grad, output_grad)))
|
||||
if not gpc.is_first_rank(ParallelMode.PIPELINE):
|
||||
send_backward(grad)
|
||||
logger.info('Rank {} sent backward.'.format(rank))
|
||||
@@ -65,17 +55,15 @@ def check_forward_backward(output_tensor, output_grad, rank, logger):
|
||||
dist.barrier()
|
||||
if not gpc.is_first_rank(ParallelMode.PIPELINE):
|
||||
tensor = send_backward_recv_forward(output_grad, output_tensor.shape)
|
||||
logger.info(
|
||||
'Rank {} sent backward received forward. Correct tensor: {}'.
|
||||
format(rank, check_equal(tensor, output_tensor)))
|
||||
logger.info('Rank {} sent backward received forward. Correct tensor: {}'.format(
|
||||
rank, check_equal(tensor, output_tensor)))
|
||||
if not gpc.is_last_rank(ParallelMode.PIPELINE):
|
||||
grad = send_forward_recv_backward(output_tensor, output_grad.shape)
|
||||
logger.info(
|
||||
'Rank {} sent forward received backward. Correct grad: {}'.format(
|
||||
rank, check_equal(grad, output_grad)))
|
||||
logger.info('Rank {} sent forward received backward. Correct grad: {}'.format(
|
||||
rank, check_equal(grad, output_grad)))
|
||||
|
||||
|
||||
def check_comm(size, rank, prev_rank, next_rank, logger):
|
||||
def check_comm(size, rank, prev_rank, next_rank, logger):
|
||||
dtype = torch.float32
|
||||
device = get_current_device()
|
||||
tensor_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE)
|
||||
@@ -90,21 +78,12 @@ def check_comm(size, rank, prev_rank, next_rank, logger):
|
||||
|
||||
|
||||
def run_check(rank, world_size, port):
|
||||
launch(
|
||||
config=CONFIG,
|
||||
rank=rank,
|
||||
world_size=world_size,
|
||||
host='localhost',
|
||||
port=port,
|
||||
backend='nccl'
|
||||
)
|
||||
launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
logger = get_dist_logger()
|
||||
rank = gpc.get_global_rank()
|
||||
prev_rank = gpc.get_prev_global_rank(ParallelMode.PIPELINE)
|
||||
next_rank = gpc.get_next_global_rank(ParallelMode.PIPELINE)
|
||||
logger.info(
|
||||
'Rank {0}: prev rank {1}, next rank {2}'.format(
|
||||
rank, prev_rank, next_rank))
|
||||
logger.info('Rank {0}: prev rank {1}, next rank {2}'.format(rank, prev_rank, next_rank))
|
||||
logger.info('Distributed environment is initialzied.')
|
||||
|
||||
check_comm(world_size, rank, prev_rank, next_rank, logger)
|
||||
|
@@ -17,48 +17,34 @@ from colossalai.utils import free_port, get_dataloader, print_rank_0
|
||||
from torchvision import transforms
|
||||
from torchvision.datasets import CIFAR10
|
||||
|
||||
import model
|
||||
|
||||
BATCH_SIZE = 32
|
||||
NUM_MICRO = 8
|
||||
|
||||
BATCH_SIZE = 4
|
||||
NUM_MICRO = 2
|
||||
|
||||
DIR_PATH = osp.dirname(osp.realpath(__file__))
|
||||
CONFIG_PATH = osp.join(DIR_PATH, './resnet_config.py')
|
||||
|
||||
|
||||
def run_schedule(rank, world_size, port):
|
||||
launch(config=CONFIG_PATH,
|
||||
rank=rank,
|
||||
world_size=world_size,
|
||||
host='localhost',
|
||||
port=port,
|
||||
backend='nccl')
|
||||
launch(config=CONFIG_PATH, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
|
||||
# build model
|
||||
model = build_pipeline_model_from_cfg(gpc.config.model, 1)
|
||||
print_rank_0('model is created')
|
||||
|
||||
train_dataset = CIFAR10(
|
||||
root=Path(os.environ['DATA']),
|
||||
download=True,
|
||||
transform=transforms.Compose(
|
||||
[
|
||||
transforms.RandomCrop(size=32, padding=4),
|
||||
transforms.RandomHorizontalFlip(),
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize(mean=[0.4914, 0.4822, 0.4465], std=[
|
||||
0.2023, 0.1994, 0.2010]),
|
||||
]
|
||||
)
|
||||
)
|
||||
train_dataset = CIFAR10(root=Path(os.environ['DATA']),
|
||||
download=True,
|
||||
transform=transforms.Compose([
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize(mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.2010]),
|
||||
]))
|
||||
|
||||
train_dataloader = get_dataloader(dataset=train_dataset,
|
||||
shuffle=True,
|
||||
add_sampler=True,
|
||||
batch_size=BATCH_SIZE,
|
||||
pin_memory=True,
|
||||
)
|
||||
train_dataloader = get_dataloader(
|
||||
dataset=train_dataset,
|
||||
shuffle=True,
|
||||
add_sampler=True,
|
||||
batch_size=BATCH_SIZE,
|
||||
pin_memory=True,
|
||||
)
|
||||
|
||||
# build criterion
|
||||
criterion = torch.nn.CrossEntropyLoss()
|
||||
|
Reference in New Issue
Block a user