update consumer and producer

This commit is contained in:
Tong Li 2025-04-30 11:30:03 +08:00
parent 87bac841ea
commit bb8d370b44
3 changed files with 17 additions and 18 deletions

View File

@ -81,18 +81,16 @@ class BaseConsumer:
# Init Hybrid ray process group # Init Hybrid ray process group
for i in range(self.num_producers): for i in range(self.num_producers):
cc.init_collective_group(self.world_size + 1, self.rank + 1, backend="hccl", group_name=f"sync_data_{i}") cc.init_collective_group(self.world_size + 1, self.rank + 1, group_name=f"sync_data_{i}")
if self.pp_size > 1: if self.pp_size > 1:
# use hybrid tp + pp # use hybrid tp + pp
if self.tp_rank == 0 and self.dp_rank == 0: if self.tp_rank == 0 and self.dp_rank == 0:
cc.init_collective_group( cc.init_collective_group(
self.num_producers + 1, self.num_producers, backend="hccl", group_name=f"sync_model_{self.pp_rank}" self.num_producers + 1, self.num_producers, group_name=f"sync_model_{self.pp_rank}"
) )
else: else:
if self.rank == 0: if self.rank == 0:
cc.init_collective_group( cc.init_collective_group(self.num_producers + 1, self.num_producers, group_name="sync_model")
self.num_producers + 1, self.num_producers, backend="hccl", group_name="sync_model"
)
self.buffer = [] self.buffer = []
@ -154,6 +152,11 @@ class BaseConsumer:
print(f"Saved model checkpoint at step {step + 1} in folder {save_path}") print(f"Saved model checkpoint at step {step + 1} in folder {save_path}")
if episode != self.num_episodes - 1 or step != self.num_update_per_episode - 1: if episode != self.num_episodes - 1 or step != self.num_update_per_episode - 1:
if self.pp_size > 1:
print(
f"[T{dist.get_rank()}] Sync model PP stage {self.pp_rank} episode {episode} step {step}"
)
else:
print(f"[T{dist.get_rank()}] Sync model episode {episode} step {step}") print(f"[T{dist.get_rank()}] Sync model episode {episode} step {step}")
torch.cuda.empty_cache() torch.cuda.empty_cache()
state_dict = self.state_dict() state_dict = self.state_dict()

View File

@ -82,16 +82,12 @@ class BaseProducer:
self.consumer_pp_size = consumer_plugin_config["pp_size"] # consumer pp size self.consumer_pp_size = consumer_plugin_config["pp_size"] # consumer pp size
def setup(self) -> None: def setup(self) -> None:
cc.init_collective_group( cc.init_collective_group(1 + self.num_consumer_procs, 0, group_name=f"sync_data_{self.producer_idx}")
1 + self.num_consumer_procs, 0, backend="hccl", group_name=f"sync_data_{self.producer_idx}"
)
if self.consumer_pp_size > 1: if self.consumer_pp_size > 1:
for i in range(self.consumer_pp_size): for i in range(self.consumer_pp_size):
cc.init_collective_group( cc.init_collective_group(self.num_producers + 1, self.producer_idx, group_name=f"sync_model_{i}")
self.num_producers + 1, self.producer_idx, backend="hccl", group_name=f"sync_model_{i}"
)
else: else:
cc.init_collective_group(self.num_producers + 1, self.producer_idx, backend="hccl", group_name="sync_model") cc.init_collective_group(self.num_producers + 1, self.producer_idx, group_name="sync_model")
def rollout(self, input_ids: torch.Tensor, attention_mask: torch.Tensor, **kwargs) -> Dict[str, torch.Tensor]: def rollout(self, input_ids: torch.Tensor, attention_mask: torch.Tensor, **kwargs) -> Dict[str, torch.Tensor]:
raise NotImplementedError raise NotImplementedError
@ -142,8 +138,8 @@ class BaseProducer:
torch.cuda.empty_cache() torch.cuda.empty_cache()
if self.consumer_pp_size > 1: if self.consumer_pp_size > 1:
# TODO: loop load
for i in range(self.consumer_pp_size): for i in range(self.consumer_pp_size):
print(f"[P{self.producer_idx}] Sync model PP stage {i}")
state_dict = ray_broadcast_tensor_dict( state_dict = ray_broadcast_tensor_dict(
None, self.num_producers, device=self.device, group_name=f"sync_model_{i}" None, self.num_producers, device=self.device, group_name=f"sync_model_{i}"
) )

View File

@ -58,7 +58,7 @@ if __name__ == "__main__":
"--master_address", type=str, default=None, help="Master address for multi-node distributed training, Optional" "--master_address", type=str, default=None, help="Master address for multi-node distributed training, Optional"
) )
parser.add_argument( parser.add_argument(
"--master_port", type=int, default=29506, help="Master port for multi-node distributed training, Optional" "--master_port", type=int, default=29505, help="Master port for multi-node distributed training, Optional"
) )
# Sampling parameters # Sampling parameters
@ -129,7 +129,7 @@ if __name__ == "__main__":
args.top_k = -1 args.top_k = -1
inference_model_config = dict(path=args.model) inference_model_config = dict(path=args.model)
train_model_config = dict(path=args.model, use_flash_attention_2=True, use_cache=False, attn_implementation="eager") train_model_config = dict(path=args.model, use_flash_attention_2=True, use_cache=False)
generate_config = dict(top_k=args.top_k, top_p=args.top_p, temperature=args.temperature) generate_config = dict(top_k=args.top_k, top_p=args.top_p, temperature=args.temperature)
if args.backend == "transformers": if args.backend == "transformers":
@ -155,7 +155,7 @@ if __name__ == "__main__":
enforce_eager=True, enforce_eager=True,
enable_chunked_prefill=True, enable_chunked_prefill=True,
max_model_len=args.max_new_tokens + args.max_prompt_tokens, max_model_len=args.max_new_tokens + args.max_prompt_tokens,
tensor_parallel_size=2, tensor_parallel_size=1,
) )
) )
generate_config.update( generate_config.update(
@ -223,7 +223,7 @@ if __name__ == "__main__":
"zero_stage": 2, "zero_stage": 2,
}, # for zero }, # for zero
# plugin_config={ # plugin_config={
# "tp_size": 2, # "tp_size": 1,
# "pp_size": 2, # "pp_size": 2,
# "microbatch_size": max( # "microbatch_size": max(
# 1, args.train_microbatch_size // 2 # 1, args.train_microbatch_size // 2