fix transformers backend

This commit is contained in:
YeAnbang
2025-03-14 18:12:35 +08:00
parent 57b49da5e4
commit bc0171d392
3 changed files with 34 additions and 10 deletions

View File

@@ -10,9 +10,9 @@ if __name__ == "__main__":
parser.add_argument("-d", "--dataset", type=str, default="data.jsonl")
parser.add_argument("-t", "--num-trainers", type=int, default=2)
parser.add_argument("-i", "--num-inferencer", type=int, default=2)
parser.add_argument("-ibs", "--inference-batch-size", type=int, default=32)
parser.add_argument("-imbs", "--inference-microbatch-size", type=int, default=16)
parser.add_argument("-tbs", "--train-batch-size", type=int, default=16)
parser.add_argument("-ibs", "--inference-batch-size", type=int, default=64)
parser.add_argument("-imbs", "--inference-microbatch-size", type=int, default=8)
parser.add_argument("-tbs", "--train-batch-size", type=int, default=32)
parser.add_argument("-tmbs", "--train-microbatch-size", type=int, default=1)
parser.add_argument("-b", "--backend", type=str, default="transformers")
parser.add_argument("-a", "--algo", type=str, default="GRPO", choices=["Simple, GRPO"])
@@ -24,29 +24,31 @@ if __name__ == "__main__":
train_model_config = dict(path=args.model)
generate_config = dict(
top_k=50,
top_p=0.8,
top_p=0.9,
temperature=1.0,
)
if args.backend == "transformers":
inference_model_config.update(
dict(
attn_implementation="flash_attention_2",
use_flash_attention_2=True,
torch_dtype=torch.bfloat16,
)
)
train_model_config.update(
dict(
attn_implementation="flash_attention_2",
use_flash_attention_2=True,
torch_dtype=torch.bfloat16,
use_cache=False,
)
)
generate_config.update(
dict(
max_length=512,
max_length=1024 + 512,
do_sample=True,
max_new_tokens=None,
early_stopping=False,
stop_strings=["</answer>"],
)
)
elif args.backend == "vllm":
@@ -82,12 +84,12 @@ if __name__ == "__main__":
num_producers=args.num_inferencer,
num_proc_per_producer=1,
num_consumer_procs=args.num_trainers,
num_episodes=1,
num_episodes=10,
inference_batch_size=args.inference_batch_size,
inference_microbatch_size=args.inference_microbatch_size,
train_batch_size=args.train_batch_size,
train_microbatch_size=args.train_microbatch_size,
dataset_config={"path": args.dataset, "max_length": 256},
dataset_config={"path": args.dataset, "max_length": 300},
dataloaders_config={},
inference_model_config=inference_model_config,
generate_config=generate_config,