[tensor] refactor chunk mgr and impl MemStatsCollectorV2 (#1077)

* polish chunk manager

* polish unit test

* impl add_extern_static_tensor for chunk mgr

* add mem stats collector v2

* polish code

* polish unit test

* polish code

* polish get chunks
This commit is contained in:
ver217
2022-06-09 20:56:34 +08:00
committed by GitHub
parent b3a03e4bfd
commit be01db37c8
6 changed files with 68 additions and 31 deletions

View File

@@ -32,7 +32,7 @@ HAS_TENSORS = {
}
}
TOTAL_MEM = {True: {True: [8192, 8192], False: [16384, 16384]}, False: {True: [8192, 4096], False: [12288, 12288]}}
TOTAL_MEM = {True: {True: [512, 512], False: [1024, 1024]}, False: {True: [512, 256], False: [768, 768]}}
@parameterize('use_chunk', [False, True])
@@ -41,8 +41,8 @@ def run_chunk_zero(use_chunk, use_zero):
rank = gpc.get_local_rank(ParallelMode.DATA)
if rank == 0:
print(f'use_chunk={use_chunk}, use_zero={use_zero}')
params = [torch.rand(32, 32) for _ in range(3)]
chunk_size = 2048 if use_chunk else None
params = [torch.rand(8, 8) for _ in range(3)]
chunk_size = 128 if use_chunk else None
chunk_manager = ChunkManager(chunk_size, enable_distributed_storage=use_zero)
assert chunk_manager.total_mem['cpu'] == 0
assert chunk_manager.total_mem['cuda'] == 0
@@ -51,18 +51,19 @@ def run_chunk_zero(use_chunk, use_zero):
check_has_params(params, HAS_TENSORS[use_chunk][use_zero][rank])
assert chunk_manager.total_mem['cpu'] == 0
assert chunk_manager.total_mem['cuda'] == TOTAL_MEM[use_chunk][use_zero][rank]
for p in params:
chunk_manager.access_chunk(p)
chunks = chunk_manager.get_chunks(params)
for chunk in chunks:
chunk_manager.access_chunk(chunk)
check_has_params(params, [True, True, True])
assert chunk_manager.total_mem['cpu'] == 0
assert chunk_manager.total_mem['cuda'] == TOTAL_MEM[use_chunk][False][rank]
for p in params:
chunk_manager.release_chunk(p)
for chunk in chunks:
chunk_manager.release_chunk(chunk)
check_has_params(params, HAS_TENSORS[use_chunk][use_zero][rank])
assert chunk_manager.total_mem['cpu'] == 0
assert chunk_manager.total_mem['cuda'] == TOTAL_MEM[use_chunk][use_zero][rank], chunk_manager.total_mem['cuda']
for p in params:
chunk_manager.move_chunk(p, torch.device('cpu'))
for chunk in chunks:
chunk_manager.move_chunk(chunk, torch.device('cpu'))
assert chunk_manager.total_mem['cpu'] == TOTAL_MEM[use_chunk][use_zero][rank], chunk_manager.total_mem['cuda']
assert chunk_manager.total_mem['cuda'] == 0