mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-07 12:01:39 +00:00
[fx] add torchaudio test (#1369)
* [fx]add torchaudio test * [fx]add torchaudio test * [fx] add torchaudio test * [fx] add torchaudio test * [fx] add torchaudio test * [fx] add torchaudio test * [fx] add torchaudio test * [fx] add torchaudio test and test patches * Delete ~ * [fx] add patches and patches test * [fx] add patches and patches test * [fx] fix patches * [fx] fix rnn patches * [fx] fix rnn patches * [fx] fix rnn patches * [fx] fix rnn patches * [fx] merge upstream * [fx] fix import errors
This commit is contained in:
@@ -0,0 +1,145 @@
|
||||
import torch
|
||||
from torchaudio_utils import trace_and_compare
|
||||
from torchaudio.models import ConvTasNet, DeepSpeech, Wav2Letter, WaveRNN
|
||||
from torchaudio.models.wavernn import MelResNet, UpsampleNetwork
|
||||
import pytest
|
||||
|
||||
|
||||
def test_wave2letter_waveform():
|
||||
batch_size = 2
|
||||
num_features = 1
|
||||
num_classes = 40
|
||||
input_length = 320
|
||||
|
||||
model = Wav2Letter(num_classes=num_classes, num_features=num_features)
|
||||
|
||||
def data_gen():
|
||||
x = torch.rand(batch_size, num_features, input_length)
|
||||
return dict(x=x)
|
||||
|
||||
trace_and_compare(model, data_gen, need_meta=False, need_concrete=False)
|
||||
|
||||
|
||||
def test_wave2letter_mfcc():
|
||||
batch_size = 2
|
||||
num_features = 13
|
||||
num_classes = 40
|
||||
input_length = 2
|
||||
|
||||
model = Wav2Letter(num_classes=num_classes, input_type="mfcc", num_features=num_features)
|
||||
|
||||
def data_gen():
|
||||
x = torch.rand(batch_size, num_features, input_length)
|
||||
return dict(x=x)
|
||||
|
||||
trace_and_compare(model, data_gen, need_meta=False, need_concrete=False)
|
||||
|
||||
|
||||
def test_melresnet_waveform():
|
||||
n_batch = 2
|
||||
n_time = 200
|
||||
n_freq = 100
|
||||
n_output = 128
|
||||
n_res_block = 10
|
||||
n_hidden = 128
|
||||
kernel_size = 5
|
||||
|
||||
model = MelResNet(n_res_block, n_freq, n_hidden, n_output, kernel_size)
|
||||
|
||||
def data_gen():
|
||||
x = torch.rand(n_batch, n_freq, n_time)
|
||||
return dict(specgram=x)
|
||||
|
||||
trace_and_compare(model, data_gen, need_meta=False, need_concrete=False)
|
||||
|
||||
|
||||
def test_upsample_network_waveform():
|
||||
upsample_scales = [5, 5, 8]
|
||||
n_batch = 2
|
||||
n_time = 200
|
||||
n_freq = 100
|
||||
n_output = 64
|
||||
n_res_block = 10
|
||||
n_hidden = 32
|
||||
kernel_size = 5
|
||||
|
||||
total_scale = 1
|
||||
for upsample_scale in upsample_scales:
|
||||
total_scale *= upsample_scale
|
||||
|
||||
model = UpsampleNetwork(upsample_scales, n_res_block, n_freq, n_hidden, n_output, kernel_size)
|
||||
|
||||
def data_gen():
|
||||
x = torch.rand(n_batch, n_freq, n_time)
|
||||
return dict(specgram=x)
|
||||
|
||||
trace_and_compare(model, data_gen, need_meta=False, need_concrete=False)
|
||||
|
||||
|
||||
def test_wavernn_waveform():
|
||||
upsample_scales = [2, 2, 5]
|
||||
n_rnn = 16
|
||||
n_fc = 16
|
||||
n_classes = 10
|
||||
hop_length = 20
|
||||
n_batch = 2
|
||||
n_time = 20
|
||||
n_freq = 10
|
||||
n_output = 16
|
||||
n_res_block = 3
|
||||
n_hidden = 16
|
||||
kernel_size = 5
|
||||
|
||||
model = WaveRNN(upsample_scales, n_classes, hop_length, n_res_block, n_rnn, n_fc, kernel_size, n_freq, n_hidden,
|
||||
n_output)
|
||||
|
||||
def data_gen():
|
||||
x = torch.rand(n_batch, 1, hop_length * (n_time - kernel_size + 1))
|
||||
mels = torch.rand(n_batch, 1, n_freq, n_time)
|
||||
return dict(waveform=x, specgram=mels)
|
||||
|
||||
trace_and_compare(model, data_gen, need_meta=True, need_concrete=False)
|
||||
|
||||
|
||||
def test_convtasnet_config():
|
||||
batch_size = 32
|
||||
num_frames = 800
|
||||
|
||||
model = ConvTasNet()
|
||||
|
||||
def data_gen():
|
||||
tensor = torch.rand(batch_size, 1, num_frames)
|
||||
return dict(input=tensor)
|
||||
|
||||
trace_and_compare(model, data_gen, need_meta=True, need_concrete=False)
|
||||
|
||||
|
||||
def test_deepspeech():
|
||||
n_batch = 2
|
||||
n_feature = 1
|
||||
n_channel = 1
|
||||
n_class = 40
|
||||
n_time = 32
|
||||
|
||||
model = DeepSpeech(n_feature=n_feature, n_class=n_class)
|
||||
|
||||
def data_gen():
|
||||
x = torch.rand(n_batch, n_channel, n_time, n_feature)
|
||||
return dict(x=x)
|
||||
|
||||
trace_and_compare(model, data_gen, need_meta=False, need_concrete=False)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
TEST_LIST = [
|
||||
test_wave2letter_waveform,
|
||||
test_wave2letter_mfcc,
|
||||
test_melresnet_waveform,
|
||||
test_upsample_network_waveform,
|
||||
test_wavernn_waveform,
|
||||
test_convtasnet_config,
|
||||
test_deepspeech,
|
||||
]
|
||||
|
||||
for test_fn in TEST_LIST:
|
||||
test_fn()
|
@@ -0,0 +1,57 @@
|
||||
import torch
|
||||
from torchaudio.models import Tacotron2
|
||||
from torchaudio_utils import trace_and_compare
|
||||
import pytest
|
||||
|
||||
|
||||
def _get_tacotron2_model(n_mels, decoder_max_step=2000, gate_threshold=0.5):
|
||||
return Tacotron2(
|
||||
mask_padding=False,
|
||||
n_mels=n_mels,
|
||||
n_symbol=20,
|
||||
n_frames_per_step=1,
|
||||
symbol_embedding_dim=32,
|
||||
encoder_embedding_dim=32,
|
||||
encoder_n_convolution=3,
|
||||
encoder_kernel_size=5,
|
||||
decoder_rnn_dim=32,
|
||||
decoder_max_step=decoder_max_step,
|
||||
decoder_dropout=0.1,
|
||||
decoder_early_stopping=True,
|
||||
attention_rnn_dim=32,
|
||||
attention_hidden_dim=32,
|
||||
attention_location_n_filter=32,
|
||||
attention_location_kernel_size=31,
|
||||
attention_dropout=0.1,
|
||||
prenet_dim=32,
|
||||
postnet_n_convolution=5,
|
||||
postnet_kernel_size=5,
|
||||
postnet_embedding_dim=512,
|
||||
gate_threshold=gate_threshold,
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.skip
|
||||
def test_tacotron_model():
|
||||
n_mels = 80
|
||||
n_batch = 3
|
||||
max_mel_specgram_length = 300
|
||||
max_text_length = 100
|
||||
|
||||
model = _get_tacotron2_model(n_mels)
|
||||
|
||||
def data_gen():
|
||||
text = torch.randint(0, 148, (n_batch, max_text_length))
|
||||
text_lengths = max_text_length * torch.ones((n_batch,))
|
||||
mel_specgram = torch.rand(n_batch, n_mels, max_mel_specgram_length)
|
||||
mel_specgram_lengths = max_mel_specgram_length * torch.ones((n_batch,))
|
||||
return dict(tokens=text,
|
||||
token_lengths=text_lengths,
|
||||
mel_specgram=mel_specgram,
|
||||
mel_specgram_lengths=mel_specgram_lengths)
|
||||
|
||||
trace_and_compare(model, data_gen, need_meta=True, need_concrete=False)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_tacotron_model()
|
@@ -0,0 +1,61 @@
|
||||
import torch
|
||||
from torchaudio_utils import trace_and_compare
|
||||
from torchaudio.models import Emformer, Conformer
|
||||
import pytest
|
||||
|
||||
|
||||
@pytest.mark.skip
|
||||
def test_conformer():
|
||||
input_dim = 80
|
||||
batch_size = 10
|
||||
num_frames = 400
|
||||
num_heads = 4
|
||||
ffn_dim = 128
|
||||
num_layers = 4
|
||||
depthwise_conv_kernel_size = 31
|
||||
|
||||
model = Conformer(
|
||||
input_dim=input_dim,
|
||||
num_heads=num_heads,
|
||||
ffn_dim=ffn_dim,
|
||||
num_layers=num_layers,
|
||||
depthwise_conv_kernel_size=depthwise_conv_kernel_size,
|
||||
)
|
||||
|
||||
def data_gen():
|
||||
lengths = torch.randint(1, num_frames, (batch_size,))
|
||||
input = torch.rand(batch_size, int(lengths.max()), input_dim)
|
||||
return dict(input=input, lengths=lengths)
|
||||
|
||||
trace_and_compare(model, data_gen, need_meta=False, need_concrete=True)
|
||||
|
||||
|
||||
@pytest.mark.skip
|
||||
def test_emformer():
|
||||
input_dim = 128
|
||||
batch_size = 10
|
||||
num_heads = 8
|
||||
ffn_dim = 256
|
||||
num_layers = 3
|
||||
segment_length = 4
|
||||
num_frames = 400
|
||||
right_context_length = 1
|
||||
|
||||
model = Emformer(input_dim, num_heads, ffn_dim, num_layers, segment_length, right_context_length)
|
||||
|
||||
def data_gen():
|
||||
lengths = torch.randint(1, num_frames, (batch_size,))
|
||||
input = torch.rand(batch_size, num_frames, input_dim)
|
||||
return dict(input=input, lengths=lengths)
|
||||
|
||||
trace_and_compare(model, data_gen, need_meta=True, need_concrete=False)
|
||||
|
||||
|
||||
@pytest.mark.skip
|
||||
def test_torchaudio_transformers():
|
||||
test_conformer()
|
||||
test_emformer()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_torchaudio_transformers()
|
@@ -0,0 +1,50 @@
|
||||
import torch
|
||||
from torchaudio.models.wav2vec2 import (
|
||||
hubert_base,
|
||||
hubert_large,
|
||||
hubert_xlarge,
|
||||
wav2vec2_base,
|
||||
wav2vec2_large,
|
||||
wav2vec2_large_lv60k,
|
||||
)
|
||||
from torchaudio_utils import trace_and_compare
|
||||
import pytest
|
||||
|
||||
MODEL_LIST = [
|
||||
hubert_base,
|
||||
hubert_large,
|
||||
hubert_xlarge,
|
||||
wav2vec2_base,
|
||||
wav2vec2_large,
|
||||
wav2vec2_large_lv60k,
|
||||
]
|
||||
|
||||
|
||||
def _smoke_test(model, device):
|
||||
model = model.to(device=device)
|
||||
|
||||
batch_size, num_frames = 3, 1024
|
||||
|
||||
def data_gen():
|
||||
waveforms = torch.randn(batch_size, num_frames, device=device)
|
||||
lengths = torch.randint(
|
||||
low=0,
|
||||
high=num_frames,
|
||||
size=[
|
||||
batch_size,
|
||||
],
|
||||
device=device,
|
||||
)
|
||||
return dict(waveforms=waveforms, lengths=lengths)
|
||||
|
||||
trace_and_compare(model, data_gen, need_meta=True, need_concrete=False)
|
||||
|
||||
|
||||
@pytest.mark.skip
|
||||
def test_wav2vec():
|
||||
for model_fn in MODEL_LIST:
|
||||
_smoke_test(model_fn(), 'cpu')
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_wav2vec()
|
@@ -0,0 +1,28 @@
|
||||
from colossalai.fx import ColoTracer
|
||||
import torch
|
||||
from torch.fx import GraphModule, Tracer
|
||||
|
||||
|
||||
def trace_and_compare(model, data_gen, need_meta=False, need_concrete=False):
|
||||
data = data_gen()
|
||||
concrete_args = data if need_concrete else {}
|
||||
meta_args = {k: v.to('meta') for k, v in data.items()} if need_meta else {}
|
||||
tracer = ColoTracer()
|
||||
|
||||
graph = tracer.trace(root=model, concrete_args=concrete_args, meta_args=meta_args)
|
||||
gm = GraphModule(model, graph, model.__class__.__name__)
|
||||
gm.recompile()
|
||||
|
||||
model.eval()
|
||||
gm.eval()
|
||||
|
||||
with torch.no_grad():
|
||||
non_fx_out = model(**data)
|
||||
fx_out = gm(**data)
|
||||
if isinstance(fx_out, tuple):
|
||||
for non_fx, fx in zip(non_fx_out, fx_out):
|
||||
assert torch.allclose(non_fx,
|
||||
fx), f'{model.__class__.__name__} has inconsistent outputs, {fx_out} vs {non_fx_out}'
|
||||
else:
|
||||
assert torch.allclose(
|
||||
fx_out, non_fx_out), f'{model.__class__.__name__} has inconsistent outputs, {fx_out} vs {non_fx_out}'
|
Reference in New Issue
Block a user