[refactor] refactor ColoTensor's unit tests (#1340)

This commit is contained in:
HELSON
2022-07-19 15:46:24 +08:00
committed by GitHub
parent f92c100ddd
commit bf5066fba7
16 changed files with 11 additions and 13 deletions

View File

@@ -0,0 +1,119 @@
import pytest
from functools import partial
from tests.test_tensor.common_utils import tensor_equal, tensor_shard_equal, set_seed
import torch
from torch.nn.parallel import DistributedDataParallel as DDP
import torch.multiprocessing as mp
import colossalai
from colossalai.testing import rerun_if_address_is_in_use
from colossalai.utils.cuda import get_current_device
from colossalai.utils import free_port
from colossalai.utils.model.colo_init_context import ColoInitContext
from colossalai.tensor import ShardSpec, ComputePattern, ComputeSpec, ProcessGroup, ColoTensor, ColoTensorSpec
from colossalai.nn.parallel.data_parallel import ColoDDP
from tests.components_to_test.registry import non_distributed_component_funcs
def init_1d_row_spec(model, pg: ProcessGroup):
tensor_spec = (ShardSpec([0], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D))
for n, p in model.named_parameters():
p.set_process_group(pg)
if 'weight' in n and 'ln' not in n:
p.set_tensor_spec(*tensor_spec)
def init_1d_col_spec(model, pg: ProcessGroup):
spec = (ShardSpec([-1], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D))
for n, p in model.named_parameters():
p.set_process_group(pg)
if 'ln' not in n and ('weight' in n or 'bias' in n):
p.set_tensor_spec(*spec)
def check_param_equal(model, torch_model, pg: ProcessGroup):
for p, torch_p in zip(model.parameters(), torch_model.parameters()):
assert pg.tp_local_rank() is not None, f"{pg.rank()} {pg.tp_world_size()} {pg._tp_degree} {pg.tp_local_rank()}1"
assert pg.tp_world_size() is not None
assert tensor_shard_equal(torch_p, p, pg.tp_local_rank(), pg.tp_world_size())
def check_grad_equal(model, torch_model, pg: ProcessGroup):
for p, torch_p in zip(model.parameters(), torch_model.parameters()):
assert tensor_shard_equal(torch_p.grad, p.grad, pg.tp_local_rank(), pg.tp_world_size())
def run_gpt(init_spec_func, use_ddp):
world_size = torch.distributed.get_world_size()
# build a PG with TP and DP hybrid
pg = ProcessGroup(dp_degree=(2 if (use_ddp and world_size >= 2) else 1))
# set seed make processes of the same tp group use the same seed
# set_seed(pg.tp_local_rank())
get_components_func = non_distributed_component_funcs.get_callable('gpt2')
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
# make sure torch_model and model has the same parameter values
with ColoInitContext(device=get_current_device()):
model = model_builder()
model = model.cuda()
torch_model = model_builder().cuda()
if use_ddp:
torch_model = DDP(torch_model, device_ids=[pg.rank()], process_group=pg.dp_process_group())
model = ColoDDP(model, process_group=pg)
for torch_p, p in zip(torch_model.parameters(), model.parameters()):
torch_p.data.copy_(p)
init_spec_func(model, pg)
check_param_equal(model, torch_model, pg)
# close the dropout in eval mode
model.eval()
torch_model.eval()
set_seed(pg.dp_local_rank())
torch.distributed.barrier()
for i, (input_ids, attn_mask) in enumerate(train_dataloader):
colo_input = ColoTensor.from_torch_tensor(input_ids, ColoTensorSpec(pg))
logits = model(colo_input, attn_mask)
torch_logits = torch_model(input_ids, attn_mask)
assert tensor_equal(torch_logits, logits), f"{torch_logits - logits}"
loss = criterion(logits, input_ids)
torch_loss = criterion(torch_logits, input_ids)
if use_ddp:
model.backward(loss)
else:
loss.backward()
torch_loss.backward()
check_grad_equal(model, torch_model, pg)
if i > 0:
break
set_seed(313)
def run_dist(rank, world_size, port, use_ddp):
if use_ddp and world_size == 1:
return
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
run_gpt(init_1d_row_spec, use_ddp)
run_gpt(init_1d_col_spec, use_ddp)
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [1, 4])
@pytest.mark.parametrize('use_ddp', [False, True])
@rerun_if_address_is_in_use()
def test_gpt(world_size, use_ddp):
run_func = partial(run_dist, world_size=world_size, port=free_port(), use_ddp=use_ddp)
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_gpt(4, use_ddp=True)

View File

@@ -0,0 +1,335 @@
import pytest
from functools import partial
import torch
import torch.multiprocessing as mp
from colossalai.tensor.colo_parameter import ColoParameter
import colossalai
from colossalai.testing import rerun_if_address_is_in_use
from colossalai.utils.cuda import get_current_device
from colossalai.utils import free_port
from colossalai.utils.model.colo_init_context import ColoInitContext
from colossalai.tensor import ColoTensor, ProcessGroup
from colossalai.nn.optimizer import ColossalaiOptimizer
from tests.components_to_test.registry import non_distributed_component_funcs
from tests.test_tensor.common_utils import tensor_shard_equal, check_equal, set_seed, \
split_param_row_tp1d, split_param_col_tp1d
def run_1d_hybrid_tp(model_name):
# A simple net with two stacked nn.Linear
get_components_func = non_distributed_component_funcs.get_callable(model_name)
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
rank = torch.distributed.get_rank()
world_size = torch.distributed.get_world_size()
set_seed(1)
with ColoInitContext(device=get_current_device()):
model = model_builder(checkpoint=True)
if rank == 0:
model_torch = model_builder(checkpoint=True)
model_torch = model_torch.cuda()
optimizer_torch = ColossalaiOptimizer(torch.optim.SGD(model_torch.parameters(), lr=0.1))
# Make two models have the same init params
for p1, p2 in zip(model.parameters(), model_torch.parameters()):
p2.data.copy_(p1.data)
else:
model_torch = None
optimizer_torch = None
pg = ProcessGroup(tp_degree=world_size)
if 'bert' == model_name:
for name, p in model.named_parameters():
if not isinstance(p, ColoTensor):
continue
# num_class = type_vocab_size = 2 | (8, 2)
if 'classifier' in name and 'weight' in name:
split_param_col_tp1d(p, pg)
# num_class = vocab_size = 30524 | (30524, 8)
elif 'word_embeddings' in name and 'weight' in name:
split_param_row_tp1d(p, pg)
# num_class = seq_len = 512 | (512, 8)
elif 'position_embeddings' in name and 'weight' in name:
split_param_row_tp1d(p, pg)
# num_class = type_vocab_size = 2 | (2, 8)
elif 'token_type_embeddings' in name and 'weight' in name:
split_param_col_tp1d(p, pg)
elif "simple_net" == model_name:
# A naive way to set spec for all weights in Linear
for name, p in model.named_parameters():
if not isinstance(p, ColoTensor):
continue
if 'embed' in name and 'weight' in name:
split_param_col_tp1d(p, pg)
if 'proj1' in name and ('weight' in name or 'bias' in name):
split_param_row_tp1d(p, pg)
if 'proj2' in name and 'weight' in name:
split_param_col_tp1d(p, pg)
if 'classifier' in name and ('weight' in name or 'bias' in name):
split_param_row_tp1d(p, pg)
model = model.cuda()
model.eval()
if rank == 0:
model_torch.eval()
colo_optimizer = ColossalaiOptimizer(torch.optim.SGD(model.parameters(), lr=0.1))
for i, (data, label) in enumerate(train_dataloader):
# Zero grad
colo_optimizer.zero_grad()
if rank == 0:
optimizer_torch.zero_grad()
torch.distributed.barrier()
data = data.to(get_current_device())
label = label.to(get_current_device())
torch.distributed.broadcast(data, 0, group=pg.tp_process_group())
torch.distributed.broadcast(label, 0, group=pg.tp_process_group())
# Bcast rank0 data to all processes
if criterion:
output = model(data)
loss = criterion(output, label)
else:
output = model(data, label)
loss = output
# Test output
if rank == 0:
if criterion:
output_torch = model_torch(data)
loss_torch = criterion(output_torch, label)
else:
output_torch = model_torch(data, label)
loss_torch = output_torch
assert torch.allclose(loss, loss_torch, rtol=1e-2)
torch.distributed.barrier()
loss.backward()
colo_optimizer.step()
if rank == 0:
loss_torch.backward()
optimizer_torch.step()
with torch.no_grad():
# check param
for p, torch_p in zip(model.parameters(), model_torch.parameters()):
assert tensor_shard_equal(torch_p, p, pg.tp_local_rank(), pg.tp_world_size())
torch.distributed.barrier()
if i > 5:
break
# Test the overrided parameters() and named_parameters() member functions
def test_model_parameters():
colossalai.launch(config={}, rank=0, world_size=1, host='localhost', port=free_port(), backend='nccl')
# build a module with 2 Linear, 4 parameters in total.
class Net(torch.nn.Module):
def __init__(self):
super().__init__()
self.fcs = torch.nn.Sequential(torch.nn.Linear(2, 3), torch.nn.Linear(3, 2))
self.extra_param = torch.nn.Parameter(torch.randn(2))
with ColoInitContext(device=get_current_device()):
model = Net()
param_cnt = 0
for name, p in model.named_parameters():
param_cnt += 1
assert param_cnt == 5
for name, colo_p in model.named_parameters():
assert colo_p.is_model_data()
param_cnt = 0
for name, p in model.named_parameters(recurse=False):
param_cnt += 1
assert param_cnt == 1
param_cnt = 0
for p in model.fcs[0].parameters(recurse=False):
param_cnt += 1
assert param_cnt == 2
def test_colo_optimizer():
get_components_func = non_distributed_component_funcs.get_callable('simple_net')
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
set_seed(1)
with ColoInitContext(lazy_memory_allocate=False, device=get_current_device()):
model = model_builder(checkpoint=True)
colo_optimizer = ColossalaiOptimizer(torch.optim.SGD(model.parameters(), lr=0.1))
for i, (data, label) in enumerate(train_dataloader):
colo_optimizer.zero_grad()
data = data.to(get_current_device())
label = label.to(get_current_device())
# Bcast rank0 data to all processes
if criterion:
output = model(data)
loss = criterion(output, label)
else:
output = model(data, label)
loss = output
loss.backward()
colo_optimizer.step()
if i > 5:
break
def run_1d_row_tp(model_name: str):
# A simple net with two stacked nn.Linear
get_components_func = non_distributed_component_funcs.get_callable(model_name)
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
rank = torch.distributed.get_rank()
set_seed(1)
with ColoInitContext(device=get_current_device()):
model = model_builder(checkpoint=True)
world_size = torch.distributed.get_world_size()
pg = ProcessGroup(tp_degree=world_size)
set_seed(1)
if rank == 0:
model_torch = model_builder(checkpoint=True)
model_torch = model_torch.cuda()
# A naive way to set spec for all weights in Linear
for mo_name, module in model.named_modules():
# print(mo_name)
for pa_name, param in module.named_parameters(recurse=False):
# print('\t', pa_name, param.shape)
if not isinstance(param, ColoTensor):
continue
if 'weight' in pa_name:
if 'embed' in mo_name and 'token' not in mo_name and 'LayerNorm' not in mo_name:
split_param_row_tp1d(param, pg)
elif 'LayerNorm' not in mo_name and 'ln' not in mo_name:
split_param_col_tp1d(param, pg)
model = model.cuda()
for i, (data, label) in enumerate(train_dataloader):
data = data.to(get_current_device())
label = label.to(get_current_device())
torch.distributed.broadcast(data, 0, group=pg.tp_process_group())
torch.distributed.broadcast(label, 0, group=pg.tp_process_group())
# Bcast rank0 data to all processes
if criterion:
output = model(data)
loss = criterion(output, label)
else:
output = model(data, label)
loss = output
# For reference
if rank == 0:
if criterion:
output_torch = model_torch(data)
loss_torch = criterion(output_torch, label)
else:
output_torch = model_torch(data, label)
loss_torch = output_torch
assert torch.allclose(loss, loss_torch, rtol=1e-2)
torch.distributed.barrier()
loss.backward()
if rank == 0:
loss_torch.backward()
torch.distributed.barrier()
if i > 5:
break
def _run_pretrain_load():
from transformers import BertForMaskedLM
set_seed(1)
model_pretrained = BertForMaskedLM.from_pretrained('bert-base-uncased')
with ColoInitContext(lazy_memory_allocate=False, device=get_current_device()):
model = BertForMaskedLM.from_pretrained('bert-base-uncased')
model_pretrained = model_pretrained.cuda()
model = model.cuda()
dict_pretrained = {}
dict_col = {}
c_ref = 0
for name, param in model_pretrained.named_parameters():
dict_pretrained[name] = param
c_ref += 1
c1 = 0
c2 = 0
for name, param in model.named_parameters():
if isinstance(param, ColoParameter):
c1 += 1
else:
c2 += 1
dict_col[name] = param
assert c_ref == c1
assert c2 == 0
if model_pretrained.cls.predictions.decoder.bias is model_pretrained.cls.predictions.bias:
assert model.cls.predictions.decoder.bias is model.cls.predictions.bias
for name, param in dict_pretrained.items():
check_equal(param, dict_col[name])
def run_model_dist(rank, world_size, port):
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
# Comment below test for speed consideration
# for name in ['bert', 'simple_net']:
# run_1d_row_tp(name)
for name in ['bert', 'simple_net']:
run_1d_hybrid_tp(name)
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [1, 4])
@rerun_if_address_is_in_use()
def test_model(world_size):
run_func = partial(run_model_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
def run_pretrain_load_dist(rank, world_size, port):
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
_run_pretrain_load()
# The test case has to download huggingface pretrained models from the internet
# So we manually trigger the test.
@pytest.mark.skip
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [1, 4])
@rerun_if_address_is_in_use()
def test_pretrain_load(world_size):
run_func = partial(run_pretrain_load_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
# test_model_parameters()
# test_colo_optgimizer()
test_model(4)
# test_pretrain_load(4)

View File

@@ -0,0 +1,229 @@
from copy import deepcopy
import pytest
from functools import partial
import torch
import torch.multiprocessing as mp
from colossalai.tensor import ColoTensor, ComputePattern, ComputeSpec, ShardSpec, ColoTensorSpec
from colossalai.nn.parallel.layers import init_colo_module, check_colo_module
from tests.test_tensor.common_utils import tensor_equal, tensor_shard_equal, set_seed
import colossalai
from colossalai.utils.cuda import get_current_device
from colossalai.utils.model.colo_init_context import ColoInitContext
from colossalai.tensor import distspec, ProcessGroup, ReplicaSpec
from colossalai.testing import rerun_if_address_is_in_use
from colossalai.utils import free_port
from tests.components_to_test.registry import non_distributed_component_funcs
def run_model_with_spec(mode, model_name):
get_components_func = non_distributed_component_funcs.get_callable(model_name)
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
world_size = torch.distributed.get_world_size()
pg = ProcessGroup(tp_degree=world_size)
rank = pg.rank()
set_seed(1)
with ColoInitContext(device=get_current_device()):
model = model_builder(checkpoint=False)
if rank == 0:
model_seq = model_builder(checkpoint=False)
model_seq = model_seq.cuda()
# Make two models have the same init params
for p1, p2 in zip(model.parameters(), model_seq.parameters()):
p2.data.copy_(p1.data)
compute_spec = ComputeSpec(ComputePattern.TP1D)
# Not all layers in Bert can be mod by 4.
# e.g. row shard for all layers is invalid because the first dim of some layer is the classification type size 2.
if 'bert' == model_name:
if 'col' == mode:
init_colo_module(model.bert.embeddings, compute_spec, pg=pg, recursive=True, mode=mode)
init_colo_module(model.bert.encoder, compute_spec, pg=pg, recursive=True, mode=mode)
init_colo_module(model.classifier, compute_spec, pg=pg, recursive=True, mode='row')
elif 'row' == mode:
init_colo_module(model.bert.embeddings, compute_spec, pg=pg, recursive=True, mode='col')
init_colo_module(model.bert.encoder, compute_spec, pg=pg, recursive=True, mode=mode)
init_colo_module(model.classifier, compute_spec, pg=pg, recursive=True, mode=mode)
elif 'simple_net' == model_name:
init_colo_module(model, compute_spec, pg=pg, recursive=True, mode=mode)
model = model.cuda()
for i, (data, label) in enumerate(train_dataloader):
data = data.to(get_current_device())
label = label.to(get_current_device())
torch.distributed.broadcast(data, 0, group=pg.tp_process_group())
torch.distributed.broadcast(label, 0, group=pg.tp_process_group())
if criterion:
output = model(data)
loss = criterion(output, label)
else:
output = model(data, label)
loss = output
# For reference
if rank == 0:
if criterion:
output_seq = model_seq(data)
loss_seq = criterion(output_seq, label)
else:
output_seq = model_seq(data, label)
loss_seq = output_seq
if rank == 0:
with torch.no_grad():
assert torch.allclose(loss, loss_seq, rtol=1e-2)
loss.backward()
if rank == 0:
loss_seq.backward()
with torch.no_grad():
# check param
for p1, p2 in zip(model.parameters(), model_seq.parameters()):
if p1.size() == p2.size():
assert torch.allclose(p1, p2)
else:
if p1.size(-1) < p2.size(-1): # col
world_size = p2.size(-1) // p1.size(-1)
split_p2 = torch.chunk(p2, world_size, dim=-1)[0]
elif p1.size(0) < p2.size(0): # row
world_size = p2.size(0) // p1.size(0)
split_p2 = torch.chunk(p2, world_size, dim=0)[0]
assert torch.allclose(p1, split_p2)
if i > 3:
break
def run_linear_with_spec(mode):
with ColoInitContext(device=get_current_device()):
model = torch.nn.Linear(4, 8)
model_handy = deepcopy(model)
world_size = torch.distributed.get_world_size()
pg = ProcessGroup(tp_degree=world_size)
compute_spec = ComputeSpec(ComputePattern.TP1D)
init_colo_module(model, compute_spec, pg=pg, recursive=True, mode=mode)
x = torch.rand(2, 4).cuda()
colo_x = ColoTensor.from_torch_tensor(x, ColoTensorSpec(pg))
out = model(x)
colo_out = model_handy(colo_x)
assert tensor_equal(out, colo_out)
grad = torch.rand_like(out)
out.backward(grad)
colo_out.backward(grad)
assert tensor_shard_equal(model_handy.weight.grad, model.weight.grad, pg.tp_local_rank(), pg.tp_world_size())
assert tensor_shard_equal(model_handy.bias.grad, model.bias.grad, pg.tp_local_rank(), pg.tp_world_size())
def run_check_shared_param():
from transformers import BertForMaskedLM, BertConfig
hidden_dim = 8
num_head = 4
sequence_length = 12
num_layer = 2
vocab_size = 24
world_size = torch.distributed.get_world_size()
pg = ProcessGroup(tp_degree=world_size)
rank = pg.rank()
config = BertConfig(vocab_size=vocab_size,
hidden_size=hidden_dim,
intermediate_size=hidden_dim * 4,
num_attention_heads=num_head,
max_position_embeddings=sequence_length,
num_hidden_layers=num_layer,
hidden_dropout_prob=0.,
attention_probs_dropout_prob=0.)
with ColoInitContext(lazy_memory_allocate=False, device=get_current_device()):
model = BertForMaskedLM(config)
model = model.cuda()
compute_spec = ComputeSpec(ComputePattern.TP1D)
# model.cls.predictions.decoder and model.cls.predictions share the bias, so they should have the same spec
assert len(model.cls.predictions.decoder.bias.shared_param_modules) == 2
# They are all Linear, so both row is allowed. This should pass check.
init_colo_module(model, compute_spec, pg=pg, recursive=True, mode='row')
# This should be detected by check because you can not set weight as row while set bias as col.
col_spec = (ShardSpec([0], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D))
# TODO(jiaruifang) optimize this line
if not model.cls.predictions.bias.has_initialized:
model.cls.predictions.bias.pg = pg
model.cls.predictions.bias.dist_spec = ReplicaSpec()
model.cls.predictions.bias.has_initialized = True
model.cls.predictions.bias.set_tensor_spec(*col_spec)
try:
check_colo_module(model.cls.predictions.decoder, pg=pg, recursive=False)
except Exception as e:
assert 'incorrectly sharded' in str(e)
def run_dist(rank, world_size, port):
config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),))
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
run_linear_with_spec('col')
run_linear_with_spec('row')
def run_dist_model(rank, world_size, port):
config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),))
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
for model_name in ['simple_net', 'bert']:
run_model_with_spec('col', model_name)
run_model_with_spec('row', model_name)
def run_dist_check(rank, world_size, port):
config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),))
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
run_check_shared_param()
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [1, 4])
@pytest.mark.skip("for higher testing speed")
@rerun_if_address_is_in_use()
def test_module_linear_1d(world_size):
run_func = partial(run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [1, 4])
@pytest.mark.skip("for higher testing speed")
@rerun_if_address_is_in_use()
def test_module_model(world_size):
run_func = partial(run_dist_model, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [1, 2])
@pytest.mark.skip("for higher testing speed")
@rerun_if_address_is_in_use()
def test_module_check(world_size):
run_func = partial(run_dist_check, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_module_linear_1d(4)