[shardformer] adapted llama to the new API (#4036)

This commit is contained in:
Frank Lee
2023-06-19 13:53:17 +08:00
parent 74d176c8d8
commit c1d5453e9f
9 changed files with 238 additions and 201 deletions

View File

@@ -1,122 +1,121 @@
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Tuple, Type
from typing import Dict, Union
import torch.nn as nn
from transformers import LlamaForCausalLM, LlamaForSequenceClassification
from transformers.models.llama.modeling_llama import LlamaDecoderLayer, LlamaModel
import colossalai.shardformer.layer.layers as col_nn
from colossalai.shardformer.layer.layers import Linear1D_Col, Linear1D_Row, VocabParallelEmbedding1D
from .basepolicy import Argument, Col_Layer, Policy, Row_Layer
from .basepolicy import ModulePolicyDescription, Policy, SubModuleReplacementDescription
class LlamaPolicy(Policy):
@staticmethod
def argument_policy(config, world_size: int) -> Dict[nn.Module, Argument]:
def preprocess(self):
# Resize embedding
vocab_size = self.model.config.vocab_size
world_size = self.shard_config.tensor_parallel_size
if vocab_size % world_size != 0:
new_vocab_size = vocab_size + world_size - vocab_size % world_size
self.model.resize_token_embeddings(new_vocab_size)
return self.model
def module_policy(self) -> Dict[Union[str, nn.Module], ModulePolicyDescription]:
return {
LlamaDecoderLayer:
Argument(attr_dict={
"self_attn.hidden_size": config.hidden_size // world_size,
"self_attn.num_heads": config.num_attention_heads // world_size,
},
param_funcs=[LlamaPolicy.attn_layer, LlamaPolicy.mlp_layer]),
ModulePolicyDescription(
attribute_replacement={
"self_attn.hidden_size":
self.model.config.hidden_size // self.shard_config.tensor_parallel_size,
"self_attn.num_heads":
self.model.config.num_attention_heads // self.shard_config.tensor_parallel_size,
},
param_replacement=[],
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="self_attn.q_proj",
target_module=Linear1D_Col,
),
SubModuleReplacementDescription(
suffix="self_attn.k_proj",
target_module=Linear1D_Col,
),
SubModuleReplacementDescription(
suffix="self_attn.v_proj",
target_module=Linear1D_Col,
),
SubModuleReplacementDescription(
suffix="self_attn.o_proj",
target_module=Linear1D_Row,
),
SubModuleReplacementDescription(
suffix="mlp.gate_proj",
target_module=Linear1D_Col,
),
SubModuleReplacementDescription(
suffix="mlp.up_proj",
target_module=Linear1D_Col,
),
SubModuleReplacementDescription(
suffix="mlp.down_proj",
target_module=Linear1D_Row,
)
],
),
LlamaModel:
Argument(attr_dict={}, param_funcs=[LlamaPolicy.embeddings])
ModulePolicyDescription(attribute_replacement={},
param_replacement=[],
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="embed_tokens",
target_module=VocabParallelEmbedding1D,
)
])
}
@staticmethod
def attn_layer() -> List:
return [
Col_Layer(
suffix="self_attn.q_proj",
weight="weight",
bias="bias",
replace_layer=col_nn.Linear1D_Col,
),
Col_Layer(
suffix="self_attn.k_proj",
weight="weight",
bias="bias",
replace_layer=col_nn.Linear1D_Col,
),
Col_Layer(
suffix="self_attn.v_proj",
weight="weight",
bias="bias",
replace_layer=col_nn.Linear1D_Col,
),
Row_Layer(
suffix="self_attn.o_proj",
weight="weight",
bias="bias",
replace_layer=col_nn.Linear1D_Row,
)
]
def new_model_class(self):
return None
@staticmethod
def mlp_layer() -> List:
return [
Col_Layer(
suffix="mlp.gate_proj",
weight="weight",
bias="bias",
replace_layer=col_nn.Linear1D_Col,
gather_output=True,
),
Col_Layer(
suffix="mlp.up_proj",
weight="weight",
bias="bias",
replace_layer=col_nn.Linear1D_Row,
gather_output=True,
),
Col_Layer(
suffix="mlp.down_proj",
weight="weight",
bias="bias",
replace_layer=col_nn.Linear1D_Col,
gather_output=True,
),
]
@staticmethod
def embeddings() -> List:
return [Col_Layer(
suffix="embed_tokens",
weight="weight",
replace_layer=col_nn.VocabParallelEmbedding1D,
)]
from transformers import LlamaForCausalLM
def postprocess(self):
return self.model
class LlamaForCausalLMPolicy(LlamaPolicy):
@staticmethod
def argument(config, world_size):
llamapolicy = LlamaPolicy.argument_policy(config, world_size)
argument = {LlamaForCausalLM: Argument(attr_dict={}, param_funcs=[LlamaForCausalLMPolicy.lm_head])}
argument.update(llamapolicy)
@staticmethod
def lm_head() -> List:
return [Col_Layer(suffix="lm_head", weight="weight", replace_layer=col_nn.Linear1D_Col, gather_output=True)]
from transformers import LlamaForSequenceClassification
def module_policy(self):
policy = super().module_policy()
# add a new item for casual lm
new_item = {
LlamaForCausalLM:
ModulePolicyDescription(attribute_replacement={},
param_replacement=[],
sub_module_replacement=[
SubModuleReplacementDescription(suffix="lm_head",
target_module=Linear1D_Col,
kwargs=dict(gather_output=True))
])
}
policy.update(new_item)
return policy
class LlamaForSequenceClassificationPolicy(LlamaPolicy):
@staticmethod
def argument(config, world_size):
llamapolicy = LlamaPolicy.argument_policy(config, world_size)
argument = {
LlamaForSequenceClassification:
Argument(attr_dict={}, param_funcs=[LlamaForSequenceClassificationPolicy.score])
}
argument.update(llamapolicy)
def module_policy(self):
policy = super().module_policy()
@staticmethod
def score() -> List:
return [Col_Layer(suffix="score", weight="weight", replace_layer=col_nn.Linear1D_Col, gather_output=True)]
# add a new item for sequence classification
new_item = {
LlamaForSequenceClassification:
ModulePolicyDescription(attribute_replacement={},
param_replacement=[],
sub_module_replacement=[
SubModuleReplacementDescription(suffix="score",
target_module=Linear1D_Col,
kwargs=dict(gather_output=True))
])
}
policy.update(new_item)
return policy