mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-01 17:17:05 +00:00
[kernel] skip tests of flash_attn and triton when they are not available (#1798)
This commit is contained in:
@@ -1,7 +1,14 @@
|
||||
import torch
|
||||
import pytest
|
||||
import torch
|
||||
from einops import rearrange
|
||||
from colossalai.kernel.cuda_native.flash_attention import flash_attention, triton_flash_attention, TRITON_AVALIABLE
|
||||
|
||||
from colossalai.kernel.cuda_native.flash_attention import HAS_FLASH_ATTN, HAS_TRITON, TRITON_AVALIABLE
|
||||
|
||||
if HAS_FLASH_ATTN:
|
||||
from colossalai.kernel.cuda_native.flash_attention import flash_attention
|
||||
|
||||
if HAS_TRITON:
|
||||
from colossalai.kernel.cuda_native.flash_attention import triton_flash_attention
|
||||
|
||||
|
||||
def baseline_attention(Z, N_CTX, H, q, k, v, sm_scale):
|
||||
@@ -14,7 +21,8 @@ def baseline_attention(Z, N_CTX, H, q, k, v, sm_scale):
|
||||
ref_out = torch.matmul(p, v)
|
||||
return ref_out
|
||||
|
||||
|
||||
|
||||
@pytest.mark.skipif(HAS_FLASH_ATTN == False, reason="triton is not available")
|
||||
@pytest.mark.parametrize('Z, H, N_CTX, D_HEAD', [(3, 2, 16, 8)])
|
||||
def test_triton_flash_attention(Z, H, N_CTX, D_HEAD, dtype=torch.float16):
|
||||
torch.manual_seed(20)
|
||||
@@ -23,7 +31,7 @@ def test_triton_flash_attention(Z, H, N_CTX, D_HEAD, dtype=torch.float16):
|
||||
v = torch.empty((Z, H, N_CTX, D_HEAD), dtype=dtype, device="cuda").normal_(mean=0, std=.5).requires_grad_()
|
||||
sm_scale = 0.3
|
||||
dout = torch.randn_like(q)
|
||||
|
||||
|
||||
ref_out = baseline_attention(Z, N_CTX, H, q, k, v, sm_scale)
|
||||
ref_out.backward(dout)
|
||||
ref_dv, v.grad = v.grad.clone(), None
|
||||
@@ -51,6 +59,7 @@ def test_triton_flash_attention(Z, H, N_CTX, D_HEAD, dtype=torch.float16):
|
||||
raise TypeError("Error type not match!")
|
||||
|
||||
|
||||
@pytest.mark.skipif(HAS_FLASH_ATTN == False, reason="triton is not available")
|
||||
@pytest.mark.parametrize('Z, H, N_CTX, D_HEAD', [(3, 2, 16, 8)])
|
||||
def test_flash_attention(Z, H, N_CTX, D_HEAD, dtype=torch.float16):
|
||||
torch.manual_seed(20)
|
||||
@@ -59,21 +68,22 @@ def test_flash_attention(Z, H, N_CTX, D_HEAD, dtype=torch.float16):
|
||||
v = torch.randn((Z, H, N_CTX, D_HEAD), dtype=dtype, device="cuda").normal_(mean=0, std=.5).requires_grad_()
|
||||
sm_scale = 0.3
|
||||
dout = torch.randn_like(q)
|
||||
|
||||
|
||||
# reference implementation
|
||||
ref_out = baseline_attention(Z, N_CTX, H, q, k, v, sm_scale)
|
||||
ref_out.backward(dout)
|
||||
ref_dv, v.grad = v.grad.clone(), None
|
||||
ref_dk, k.grad = k.grad.clone(), None
|
||||
ref_dq, q.grad = q.grad.clone(), None
|
||||
|
||||
|
||||
# flash implementation
|
||||
q, k, v = map(lambda x: rearrange(x, 'z h n d -> (z n) h d'), [q, k, v])
|
||||
tri_out = flash_attention(q, k, v, sm_scale, Z, N_CTX)
|
||||
dout = rearrange(dout, 'z h n d -> (z n) h d').detach()
|
||||
tri_out.backward(dout, retain_graph=True)
|
||||
tri_dq, tri_dk, tri_dv, = torch.autograd.grad(tri_out, (q, k, v), dout)
|
||||
tri_out, tri_dq, tri_dk, tri_dv = map(lambda x: rearrange(x, '(z n) h d -> z h n d', z=Z), (tri_out, tri_dq, tri_dk, tri_dv))
|
||||
tri_out, tri_dq, tri_dk, tri_dv = map(lambda x: rearrange(x, '(z n) h d -> z h n d', z=Z),
|
||||
(tri_out, tri_dq, tri_dk, tri_dv))
|
||||
|
||||
# compare
|
||||
assert torch.allclose(ref_out, tri_out, atol=1e-3)
|
||||
|
Reference in New Issue
Block a user