[inference] streaming Linear 1D Row inference (#1874)

This commit is contained in:
Jiarui Fang
2022-11-10 17:03:21 +08:00
committed by GitHub
parent a141681260
commit c2947dadf1
4 changed files with 629 additions and 554 deletions

View File

@@ -32,7 +32,7 @@ class MLP(torch.nn.Module):
return x
def run_workflow(world_size):
def run_workflow(world_size, dev):
# initailization
with LazyInitContext() as ctx:
model = MLP(16)
@@ -46,7 +46,7 @@ def run_workflow(world_size):
gm = torch.fx.GraphModule(model, graph, model.__class__.__name__)
# annotate
annotated_gm = transformer_mlp_pass(gm, process_group=ProcessGroup())
annotated_gm = transformer_mlp_pass(gm, process_group=ProcessGroup(tp_degree=world_size))
annotated_gm.recompile()
# materialization and sharding
@@ -61,22 +61,25 @@ def run_workflow(world_size):
# test forward to make sure that IR transform will produce the same results
# like how ColoTensor would do it normally
data = torch.rand(4, 16)
data = torch.rand(4, 16, device=dev)
non_fx_out = model(data)
fx_out = annotated_gm(data)
assert torch.equal(non_fx_out, fx_out), f'{non_fx_out} vs {fx_out}'
def run_dist(rank, world_size, port):
def run_dist(rank, world_size, dev, port):
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
run_workflow(world_size)
run_workflow(world_size, dev)
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [1, 2])
@pytest.mark.parametrize('dev', ['cuda', 'cpu'])
@rerun_if_address_is_in_use()
def test_complete_workflow(world_size):
run_func = partial(run_dist, world_size=world_size, port=free_port())
def test_complete_workflow(world_size, dev):
if dev == 'cpu' and world_size > 1:
return
run_func = partial(run_dist, world_size=world_size, dev=dev, port=free_port())
mp.spawn(run_func, nprocs=world_size)

File diff suppressed because it is too large Load Diff

View File

@@ -1,46 +1,49 @@
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
from functools import partial
import pytest
import torch
import torch.multiprocessing as mp
from colossalai.core import global_context as gpc
from colossalai.logging import disable_existing_loggers
from colossalai.initialize import launch
from colossalai.utils import free_port
from colossalai.testing import rerun_if_address_is_in_use
from checks_1d.check_layer_1d import *
CONFIG = dict(parallel=dict(pipeline=dict(size=1), tensor=dict(size=4, mode='1d')),)
def check_layer(rank, world_size, port):
disable_existing_loggers()
launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
check_linear_col()
check_linear_row()
check_embed()
check_vocab_parallel_embed()
check_classifier_no_given_weight()
check_vocab_parallel_classifier_no_given_weight()
check_classifier_given_embed_weight()
check_vocab_parallel_classifier_given_embed_weight()
check_vocab_parallel_loss()
gpc.destroy()
torch.cuda.empty_cache()
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_1d():
world_size = 4
run_func = partial(check_layer, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_1d()
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
from functools import partial
import pytest
import torch
import torch.multiprocessing as mp
from checks_1d.check_layer_1d import *
from colossalai.core import global_context as gpc
from colossalai.initialize import launch
from colossalai.logging import disable_existing_loggers
from colossalai.testing import rerun_if_address_is_in_use
from colossalai.utils import free_port
CONFIG = dict(parallel=dict(pipeline=dict(size=1), tensor=dict(size=4, mode='1d')),)
def check_layer(rank, world_size, port):
disable_existing_loggers()
launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
check_linear_col()
check_linear_row()
check_embed()
check_vocab_parallel_embed()
check_classifier_no_given_weight()
check_vocab_parallel_classifier_no_given_weight()
check_classifier_given_embed_weight()
check_vocab_parallel_classifier_given_embed_weight()
check_vocab_parallel_loss()
check_linear_row_stream_inference()
gpc.destroy()
torch.cuda.empty_cache()
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_1d():
world_size = 4
run_func = partial(check_layer, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_1d()