mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-08 12:30:42 +00:00
[inference] streaming Linear 1D Row inference (#1874)
This commit is contained in:
@@ -32,7 +32,7 @@ class MLP(torch.nn.Module):
|
||||
return x
|
||||
|
||||
|
||||
def run_workflow(world_size):
|
||||
def run_workflow(world_size, dev):
|
||||
# initailization
|
||||
with LazyInitContext() as ctx:
|
||||
model = MLP(16)
|
||||
@@ -46,7 +46,7 @@ def run_workflow(world_size):
|
||||
gm = torch.fx.GraphModule(model, graph, model.__class__.__name__)
|
||||
|
||||
# annotate
|
||||
annotated_gm = transformer_mlp_pass(gm, process_group=ProcessGroup())
|
||||
annotated_gm = transformer_mlp_pass(gm, process_group=ProcessGroup(tp_degree=world_size))
|
||||
annotated_gm.recompile()
|
||||
|
||||
# materialization and sharding
|
||||
@@ -61,22 +61,25 @@ def run_workflow(world_size):
|
||||
|
||||
# test forward to make sure that IR transform will produce the same results
|
||||
# like how ColoTensor would do it normally
|
||||
data = torch.rand(4, 16)
|
||||
data = torch.rand(4, 16, device=dev)
|
||||
non_fx_out = model(data)
|
||||
fx_out = annotated_gm(data)
|
||||
assert torch.equal(non_fx_out, fx_out), f'{non_fx_out} vs {fx_out}'
|
||||
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
def run_dist(rank, world_size, dev, port):
|
||||
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
run_workflow(world_size)
|
||||
run_workflow(world_size, dev)
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@pytest.mark.parametrize('world_size', [1, 2])
|
||||
@pytest.mark.parametrize('dev', ['cuda', 'cpu'])
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_complete_workflow(world_size):
|
||||
run_func = partial(run_dist, world_size=world_size, port=free_port())
|
||||
def test_complete_workflow(world_size, dev):
|
||||
if dev == 'cpu' and world_size > 1:
|
||||
return
|
||||
run_func = partial(run_dist, world_size=world_size, dev=dev, port=free_port())
|
||||
mp.spawn(run_func, nprocs=world_size)
|
||||
|
||||
|
||||
|
File diff suppressed because it is too large
Load Diff
@@ -1,46 +1,49 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
from functools import partial
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.logging import disable_existing_loggers
|
||||
from colossalai.initialize import launch
|
||||
from colossalai.utils import free_port
|
||||
from colossalai.testing import rerun_if_address_is_in_use
|
||||
from checks_1d.check_layer_1d import *
|
||||
|
||||
CONFIG = dict(parallel=dict(pipeline=dict(size=1), tensor=dict(size=4, mode='1d')),)
|
||||
|
||||
|
||||
def check_layer(rank, world_size, port):
|
||||
disable_existing_loggers()
|
||||
launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
|
||||
check_linear_col()
|
||||
check_linear_row()
|
||||
check_embed()
|
||||
check_vocab_parallel_embed()
|
||||
check_classifier_no_given_weight()
|
||||
check_vocab_parallel_classifier_no_given_weight()
|
||||
check_classifier_given_embed_weight()
|
||||
check_vocab_parallel_classifier_given_embed_weight()
|
||||
check_vocab_parallel_loss()
|
||||
|
||||
gpc.destroy()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_1d():
|
||||
world_size = 4
|
||||
run_func = partial(check_layer, world_size=world_size, port=free_port())
|
||||
mp.spawn(run_func, nprocs=world_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_1d()
|
||||
#!/usr/bin/env python
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
from functools import partial
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
from checks_1d.check_layer_1d import *
|
||||
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.initialize import launch
|
||||
from colossalai.logging import disable_existing_loggers
|
||||
from colossalai.testing import rerun_if_address_is_in_use
|
||||
from colossalai.utils import free_port
|
||||
|
||||
CONFIG = dict(parallel=dict(pipeline=dict(size=1), tensor=dict(size=4, mode='1d')),)
|
||||
|
||||
|
||||
def check_layer(rank, world_size, port):
|
||||
disable_existing_loggers()
|
||||
launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
|
||||
check_linear_col()
|
||||
check_linear_row()
|
||||
check_embed()
|
||||
check_vocab_parallel_embed()
|
||||
check_classifier_no_given_weight()
|
||||
check_vocab_parallel_classifier_no_given_weight()
|
||||
check_classifier_given_embed_weight()
|
||||
check_vocab_parallel_classifier_given_embed_weight()
|
||||
check_vocab_parallel_loss()
|
||||
|
||||
check_linear_row_stream_inference()
|
||||
|
||||
gpc.destroy()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_1d():
|
||||
world_size = 4
|
||||
run_func = partial(check_layer, world_size=world_size, port=free_port())
|
||||
mp.spawn(run_func, nprocs=world_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_1d()
|
||||
|
Reference in New Issue
Block a user