mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-08 20:40:34 +00:00
[autochunk] add benchmark for transformer and alphafold (#2543)
This commit is contained in:
@@ -0,0 +1,120 @@
|
||||
from typing import Any, Dict, List
|
||||
|
||||
import torch
|
||||
import torch.fx
|
||||
|
||||
import colossalai
|
||||
from colossalai.autochunk.autochunk_codegen import AUTOCHUNK_AVAILABLE
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.fx.graph_module import ColoGraphModule
|
||||
from colossalai.fx.passes.meta_info_prop import MetaInfoProp
|
||||
from colossalai.utils import free_port
|
||||
|
||||
if AUTOCHUNK_AVAILABLE:
|
||||
from colossalai.autochunk.autochunk_codegen import AutoChunkCodeGen
|
||||
from colossalai.fx.profiler import MetaTensor
|
||||
from colossalai.fx.tracer.experimental import ColoTracer, symbolic_trace
|
||||
|
||||
|
||||
def assert_codegen_run(
|
||||
model: Any,
|
||||
meta_args: List,
|
||||
concrete_args: List = None,
|
||||
max_memory: int = None,
|
||||
print_mem: bool = False,
|
||||
print_progress: bool = False,
|
||||
print_code: bool = False,
|
||||
) -> List[Dict]:
|
||||
if concrete_args is None:
|
||||
concrete_args = []
|
||||
model = model()
|
||||
|
||||
# trace the meta graph and setup codegen
|
||||
meta_graph = symbolic_trace(
|
||||
model,
|
||||
meta_args={k: v.to(torch.device("meta")) for k, v in meta_args},
|
||||
concrete_args={k: v for k, v in concrete_args},
|
||||
)
|
||||
interp = MetaInfoProp(meta_graph)
|
||||
meta_tensors = [MetaTensor(i[1], fake_device="cuda:0") for i in meta_args] + [i[1] for i in concrete_args]
|
||||
interp.propagate(*meta_tensors)
|
||||
codegen = AutoChunkCodeGen(
|
||||
meta_graph,
|
||||
max_memory=max_memory,
|
||||
print_mem=print_mem,
|
||||
print_progress=print_progress,
|
||||
)
|
||||
chunks = codegen.chunk_infos
|
||||
|
||||
# trace and recompile
|
||||
# MetaInfoProp requires symbolic_trace but CodeGen requires ColoTracer
|
||||
graph = ColoTracer().trace(
|
||||
model.cuda(),
|
||||
meta_args={k: v.to(torch.device("meta")) for k, v in meta_args},
|
||||
concrete_args={k: v for k, v in concrete_args},
|
||||
)
|
||||
graph.set_codegen(codegen)
|
||||
gm = ColoGraphModule(model, graph, ckpt_codegen=False)
|
||||
gm.recompile()
|
||||
|
||||
# assert chunk in code
|
||||
code = graph.python_code("self").src
|
||||
if print_code:
|
||||
print(code)
|
||||
assert "chunk_result = None; chunk_size = None;" in code
|
||||
|
||||
# assert result
|
||||
inputs = [i[1] for i in meta_args] + [i[1] for i in concrete_args]
|
||||
model.cuda().eval()
|
||||
gm.eval()
|
||||
with torch.no_grad():
|
||||
out_gm = gm(*inputs)
|
||||
out_model = model(*inputs)
|
||||
assert torch.allclose(out_gm["sample"], out_model["sample"],
|
||||
atol=1e-4), "fx_out doesn't comply with original output, diff is %.2e" % torch.mean(
|
||||
torch.abs(out_gm["sample"] - out_model["sample"]))
|
||||
|
||||
return chunks
|
||||
|
||||
|
||||
def run_test(
|
||||
rank: int,
|
||||
model: Any,
|
||||
data: tuple,
|
||||
max_memory: int,
|
||||
print_code: bool,
|
||||
print_mem: bool,
|
||||
print_progress: bool,
|
||||
get_chunk_target: Any = None,
|
||||
) -> None:
|
||||
# launch colossalai
|
||||
colossalai.launch(
|
||||
config={},
|
||||
rank=rank,
|
||||
world_size=1,
|
||||
host="localhost",
|
||||
port=free_port(),
|
||||
backend="nccl",
|
||||
)
|
||||
|
||||
# build model and input
|
||||
meta_args, concrete_args = data
|
||||
chunks = assert_codegen_run(
|
||||
model,
|
||||
meta_args=meta_args,
|
||||
concrete_args=concrete_args,
|
||||
max_memory=max_memory,
|
||||
print_code=print_code,
|
||||
print_mem=print_mem,
|
||||
print_progress=print_progress,
|
||||
)
|
||||
|
||||
if get_chunk_target is not None:
|
||||
chunk_found = [i["region"] for i in chunks]
|
||||
chunk_target = get_chunk_target()[max_memory]
|
||||
assert (chunk_found == chunk_target), "found regions %s doesn't equal target regions %s" % (
|
||||
str(chunk_found),
|
||||
str(chunk_target),
|
||||
)
|
||||
|
||||
gpc.destroy()
|
@@ -0,0 +1,70 @@
|
||||
from functools import partial
|
||||
from typing import List, Tuple
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
|
||||
try:
|
||||
from diffusers import UNet2DModel
|
||||
MODELS = [UNet2DModel]
|
||||
HAS_REPO = True
|
||||
except:
|
||||
MODELS = []
|
||||
HAS_REPO = False
|
||||
|
||||
from test_autochunk_diffuser_utils import run_test
|
||||
|
||||
from colossalai.autochunk.autochunk_codegen import AUTOCHUNK_AVAILABLE
|
||||
|
||||
BATCH_SIZE = 2
|
||||
SEQ_LENGTH = 5
|
||||
HEIGHT = 224
|
||||
WIDTH = 224
|
||||
IN_CHANNELS = 3
|
||||
LATENTS_SHAPE = (BATCH_SIZE, IN_CHANNELS, HEIGHT // 7, WIDTH // 7)
|
||||
|
||||
|
||||
def get_data(shape: tuple) -> Tuple[List, List]:
|
||||
sample = torch.randn(shape)
|
||||
meta_args = [
|
||||
("sample", sample),
|
||||
]
|
||||
concrete_args = [("timestep", 50)]
|
||||
return meta_args, concrete_args
|
||||
|
||||
|
||||
@pytest.mark.skipif(
|
||||
True,
|
||||
reason="not implemented",
|
||||
)
|
||||
@pytest.mark.skipif(
|
||||
not (AUTOCHUNK_AVAILABLE and HAS_REPO),
|
||||
reason="torch version is lower than 1.12.0",
|
||||
)
|
||||
@pytest.mark.parametrize("model", MODELS)
|
||||
@pytest.mark.parametrize("shape", [LATENTS_SHAPE])
|
||||
@pytest.mark.parametrize("max_memory", [64])
|
||||
def test_evoformer_block(model, shape, max_memory):
|
||||
run_func = partial(
|
||||
run_test,
|
||||
max_memory=max_memory,
|
||||
model=model,
|
||||
data=get_data(shape),
|
||||
print_code=False,
|
||||
print_mem=False,
|
||||
print_progress=False,
|
||||
)
|
||||
mp.spawn(run_func, nprocs=1)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
run_test(
|
||||
rank=0,
|
||||
data=get_data(LATENTS_SHAPE),
|
||||
max_memory=64,
|
||||
model=UNet2DModel,
|
||||
print_code=False,
|
||||
print_mem=False,
|
||||
print_progress=False,
|
||||
)
|
Reference in New Issue
Block a user