mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-04 02:26:51 +00:00
[autochunk] add benchmark for transformer and alphafold (#2543)
This commit is contained in:
@@ -0,0 +1,150 @@
|
||||
import time
|
||||
from typing import Any, Dict, List
|
||||
|
||||
import torch
|
||||
import torch.fx
|
||||
|
||||
import colossalai
|
||||
from colossalai.autochunk.autochunk_codegen import AUTOCHUNK_AVAILABLE
|
||||
from colossalai.fx.graph_module import ColoGraphModule
|
||||
from colossalai.fx.passes.meta_info_prop import MetaInfoProp
|
||||
from colossalai.fx.profiler import parameter_size
|
||||
from colossalai.utils import free_port
|
||||
|
||||
if AUTOCHUNK_AVAILABLE:
|
||||
from colossalai.autochunk.autochunk_codegen import AutoChunkCodeGen
|
||||
from colossalai.fx.profiler import MetaTensor
|
||||
from colossalai.fx.tracer.experimental import ColoTracer, symbolic_trace
|
||||
|
||||
|
||||
def _benchmark_autochunk_gpt_gm(
|
||||
model: Any,
|
||||
data: tuple,
|
||||
max_memory: int = None,
|
||||
) -> None:
|
||||
model = model.cuda().eval()
|
||||
|
||||
# build model and input
|
||||
meta_args, concrete_args, sequence = data
|
||||
if concrete_args is None:
|
||||
concrete_args = {}
|
||||
|
||||
# trace the meta graph and setup codegen
|
||||
meta_graph = symbolic_trace(
|
||||
model,
|
||||
meta_args={k: v.to(torch.device("meta")) for k, v in meta_args.items()},
|
||||
concrete_args={k: v for k, v in concrete_args.items()},
|
||||
)
|
||||
interp = MetaInfoProp(meta_graph)
|
||||
meta_tensors = [meta_args[i] if i in meta_args else concrete_args[i] for i in sequence]
|
||||
meta_tensors = [MetaTensor(i, fake_device="cuda:0") if isinstance(i, torch.Tensor) else i for i in meta_tensors]
|
||||
interp.propagate(*meta_tensors)
|
||||
codegen = AutoChunkCodeGen(
|
||||
meta_graph,
|
||||
max_memory=max_memory,
|
||||
)
|
||||
|
||||
# trace and recompile
|
||||
# MetaInfoProp requires symbolic_trace but CodeGen requires ColoTracer
|
||||
graph = ColoTracer().trace(
|
||||
model.cuda().eval(),
|
||||
meta_args={k: v.to(torch.device("meta")) for k, v in meta_args.items()},
|
||||
concrete_args={k: v for k, v in concrete_args.items()},
|
||||
)
|
||||
graph.set_codegen(codegen)
|
||||
gm = ColoGraphModule(model, graph, ckpt_codegen=False)
|
||||
gm.recompile()
|
||||
|
||||
# init inputs
|
||||
inputs = [meta_args[i] if i in meta_args else concrete_args[i] for i in sequence]
|
||||
inputs = [i.cuda() if isinstance(i, torch.Tensor) else i for i in inputs]
|
||||
model.cuda().eval()
|
||||
|
||||
# bench
|
||||
para_mem = float(parameter_size(model)) / 1024**2 * 6
|
||||
act_mem = _benchmark_memory(gm, inputs)
|
||||
speed = _benchmark_speed(gm, inputs)
|
||||
print("gpt autochunk, time: %.4fs, act mem: %.2fMB, para mem: %.2fMB, all mem: %.2fMB" %
|
||||
(speed, act_mem, para_mem, act_mem + para_mem))
|
||||
|
||||
|
||||
def _benchmark_autochunk_gpt_origin(
|
||||
model: Any,
|
||||
data: tuple,
|
||||
) -> None:
|
||||
# build model and input
|
||||
meta_args, concrete_args, sequence = data
|
||||
if concrete_args is None:
|
||||
concrete_args = {}
|
||||
|
||||
# init inputs
|
||||
inputs = [meta_args[i] if i in meta_args else concrete_args[i] for i in sequence]
|
||||
inputs = [i.cuda() if isinstance(i, torch.Tensor) else i for i in inputs]
|
||||
model.cuda().eval()
|
||||
|
||||
# bench
|
||||
para_mem = float(parameter_size(model)) / 1024**2 * 6
|
||||
act_mem = _benchmark_memory(model, inputs)
|
||||
speed = _benchmark_speed(model, inputs)
|
||||
print("gpt origin, time: %.4fs, act mem: %.2fMB, para mem: %.2fMB, all mem: %.2fMB" %
|
||||
(speed, act_mem, para_mem, act_mem + para_mem))
|
||||
return act_mem
|
||||
|
||||
|
||||
def _benchmark_memory(model, inputs):
|
||||
with torch.no_grad():
|
||||
torch.cuda.reset_peak_memory_stats()
|
||||
now_mem = float(torch.cuda.memory_allocated()) / 1024**2
|
||||
model(*[i.clone() if isinstance(i, torch.Tensor) else i for i in inputs])
|
||||
new_max_mem = float(torch.cuda.max_memory_allocated()) / 1024**2
|
||||
return new_max_mem - now_mem
|
||||
|
||||
|
||||
def _benchmark_speed(model, inputs, loop=5):
|
||||
with torch.no_grad():
|
||||
for _ in range(loop // 2 + 1):
|
||||
model(*inputs)
|
||||
torch.cuda.synchronize()
|
||||
time1 = time.time()
|
||||
for _ in range(loop):
|
||||
model(*inputs)
|
||||
torch.cuda.synchronize()
|
||||
time2 = time.time()
|
||||
return (time2 - time1) / loop
|
||||
|
||||
|
||||
def benchmark_autochunk_gpt(batch=1, seq=512, n_embd=768, n_head=12):
|
||||
from test_autochunk_gpt import GPT2Config, GPT2Model, get_data
|
||||
model = GPT2Model
|
||||
config = GPT2Config(n_embd=n_embd, n_position=seq, n_layer=2, n_head=n_head)
|
||||
config.max_position_embeddings = seq
|
||||
model = model(config=config)
|
||||
shape = [batch, seq]
|
||||
print("\nbatch: %d, seq: %d, n_embd: %d, n_head: %d" % (batch, seq, n_embd, n_head))
|
||||
max_mem = _benchmark_autochunk_gpt_origin(model, get_data(shape))
|
||||
for ratio in [0.5, 0.4, 0.3, 0.2]:
|
||||
try:
|
||||
_benchmark_autochunk_gpt_gm(model, get_data(shape), max_mem * ratio)
|
||||
except RuntimeError as e:
|
||||
if e.args[0] == 'Search failed. Try a larger memory threshold.':
|
||||
break
|
||||
except Exception as e:
|
||||
raise e
|
||||
_benchmark_autochunk_gpt_gm(model, get_data(shape), None)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# launch colossalai
|
||||
colossalai.launch(
|
||||
config={},
|
||||
rank=0,
|
||||
world_size=1,
|
||||
host="localhost",
|
||||
port=free_port(),
|
||||
backend="nccl",
|
||||
)
|
||||
benchmark_autochunk_gpt(batch=1, seq=1024, n_embd=768, n_head=12)
|
||||
benchmark_autochunk_gpt(batch=1, seq=2048, n_embd=768, n_head=12)
|
||||
benchmark_autochunk_gpt(batch=1, seq=4096, n_embd=768, n_head=12)
|
||||
benchmark_autochunk_gpt(batch=1, seq=6144, n_embd=768, n_head=12)
|
||||
benchmark_autochunk_gpt(batch=1, seq=8192, n_embd=768, n_head=12)
|
@@ -0,0 +1,63 @@
|
||||
from functools import partial
|
||||
from typing import List, Tuple
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
|
||||
try:
|
||||
from transformers import GPT2Config, GPT2Model
|
||||
MODELS = [GPT2Model]
|
||||
HAS_REPO = True
|
||||
except:
|
||||
MODELS = []
|
||||
HAS_REPO = False
|
||||
|
||||
from test_autochunk_transformer_utils import run_test
|
||||
|
||||
from colossalai.autochunk.autochunk_codegen import AUTOCHUNK_AVAILABLE
|
||||
|
||||
BATCH_SIZE = 1
|
||||
SEQ_LENGTH = 512
|
||||
|
||||
|
||||
def get_data(shape: tuple) -> Tuple[List, List]:
|
||||
input_ids = torch.zeros(shape, dtype=torch.int64)
|
||||
token_type_ids = torch.zeros(shape, dtype=torch.int64)
|
||||
attention_mask = torch.ones(shape, dtype=torch.int64)
|
||||
meta_args = dict(input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask)
|
||||
concrete_args = {"past_key_values": None}
|
||||
sequence = ["input_ids", "past_key_values", "attention_mask", "token_type_ids"]
|
||||
return meta_args, concrete_args, sequence
|
||||
|
||||
|
||||
@pytest.mark.skipif(
|
||||
not (AUTOCHUNK_AVAILABLE and HAS_REPO),
|
||||
reason="torch version is lower than 1.12.0",
|
||||
)
|
||||
@pytest.mark.parametrize("model", MODELS)
|
||||
@pytest.mark.parametrize("shape", [(BATCH_SIZE, SEQ_LENGTH)])
|
||||
@pytest.mark.parametrize("max_memory", [None, 6, 8])
|
||||
def test_autochunk_gpt(model, shape, max_memory):
|
||||
run_func = partial(
|
||||
run_test,
|
||||
data=get_data(shape),
|
||||
max_memory=max_memory,
|
||||
model=model,
|
||||
config=GPT2Config(n_embd=96, n_position=shape[1], n_layer=2, n_head=4),
|
||||
)
|
||||
mp.spawn(run_func, nprocs=1)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
run_test(
|
||||
rank=0,
|
||||
data=get_data((BATCH_SIZE, SEQ_LENGTH)),
|
||||
max_memory=None,
|
||||
model=GPT2Model,
|
||||
config=GPT2Config(n_embd=96, n_position=SEQ_LENGTH, n_layer=2, n_head=4),
|
||||
print_code=False,
|
||||
print_est_mem=False,
|
||||
print_mem=False,
|
||||
print_progress=False,
|
||||
)
|
@@ -0,0 +1,141 @@
|
||||
from typing import Any, Dict, List
|
||||
|
||||
import torch
|
||||
import torch.fx
|
||||
|
||||
import colossalai
|
||||
from colossalai.autochunk.autochunk_codegen import AUTOCHUNK_AVAILABLE
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.fx.graph_module import ColoGraphModule
|
||||
from colossalai.fx.passes.meta_info_prop import MetaInfoProp
|
||||
from colossalai.utils import free_port
|
||||
|
||||
if AUTOCHUNK_AVAILABLE:
|
||||
from colossalai.autochunk.autochunk_codegen import AutoChunkCodeGen
|
||||
from colossalai.fx.profiler import MetaTensor
|
||||
from colossalai.fx.tracer.experimental import ColoTracer, symbolic_trace
|
||||
|
||||
|
||||
def assert_codegen_run(
|
||||
model: Any,
|
||||
data: tuple,
|
||||
max_memory: int = None,
|
||||
print_est_mem: bool = False,
|
||||
print_mem: bool = False,
|
||||
print_progress: bool = False,
|
||||
print_code: bool = False,
|
||||
) -> List[Dict]:
|
||||
meta_args, concrete_args, sequence = data
|
||||
if concrete_args is None:
|
||||
concrete_args = {}
|
||||
|
||||
# trace the meta graph and setup codegen
|
||||
meta_graph = symbolic_trace(
|
||||
model,
|
||||
meta_args={k: v.to(torch.device("meta")) for k, v in meta_args.items()},
|
||||
concrete_args={k: v for k, v in concrete_args.items()},
|
||||
)
|
||||
interp = MetaInfoProp(meta_graph)
|
||||
meta_tensors = [meta_args[i] if i in meta_args else concrete_args[i] for i in sequence]
|
||||
meta_tensors = [MetaTensor(i, fake_device="cuda:0") if isinstance(i, torch.Tensor) else i for i in meta_tensors]
|
||||
interp.propagate(*meta_tensors)
|
||||
codegen = AutoChunkCodeGen(
|
||||
meta_graph,
|
||||
max_memory=max_memory,
|
||||
print_mem=print_est_mem,
|
||||
print_progress=print_progress,
|
||||
)
|
||||
chunks = codegen.chunk_infos
|
||||
|
||||
# trace and recompile
|
||||
# MetaInfoProp requires symbolic_trace but CodeGen requires ColoTracer
|
||||
graph = ColoTracer().trace(
|
||||
model.cuda(),
|
||||
meta_args={k: v.to(torch.device("meta")) for k, v in meta_args.items()},
|
||||
concrete_args={k: v for k, v in concrete_args.items()},
|
||||
)
|
||||
graph.set_codegen(codegen)
|
||||
gm = ColoGraphModule(model, graph, ckpt_codegen=False)
|
||||
gm.recompile()
|
||||
|
||||
# assert chunk in code
|
||||
code = graph.python_code("self").src
|
||||
if print_code:
|
||||
print(code)
|
||||
assert "chunk_size = None; " in code
|
||||
|
||||
# assert result
|
||||
inputs = [meta_args[i] if i in meta_args else concrete_args[i] for i in sequence]
|
||||
inputs = [i.cuda() if isinstance(i, torch.Tensor) else i for i in inputs]
|
||||
model.cuda().eval()
|
||||
gm.eval()
|
||||
with torch.no_grad():
|
||||
if print_mem:
|
||||
torch.cuda.reset_peak_memory_stats()
|
||||
now_mem = torch.cuda.memory_allocated() / 1024**2
|
||||
out_gm = gm(*[i.clone() if isinstance(i, torch.Tensor) else i for i in inputs])
|
||||
if print_mem:
|
||||
new_max_mem = torch.cuda.max_memory_allocated() / 1024**2
|
||||
print("mem: %.2fMB" % (new_max_mem - now_mem))
|
||||
out_model = model(*inputs)
|
||||
assert_allclose(out_model, out_gm)
|
||||
return chunks
|
||||
|
||||
|
||||
def assert_allclose(out_model: Any, out_gm: Any) -> None:
|
||||
"""
|
||||
assert allclose for out
|
||||
"""
|
||||
if isinstance(out_model, torch.Tensor):
|
||||
assert torch.allclose(out_model, out_gm,
|
||||
atol=1e-4), "fx_out doesn't comply with original output, diff is %.2e" % torch.mean(
|
||||
torch.abs(out_model - out_gm))
|
||||
elif isinstance(out_model, dict):
|
||||
for k in out_model.keys():
|
||||
assert_allclose(out_model[k], out_gm[k])
|
||||
elif isinstance(out_model, tuple) or isinstance(out_model, list) or isinstance(out_model, set):
|
||||
for i, j in zip(out_model, out_gm):
|
||||
assert_allclose(i, j)
|
||||
|
||||
|
||||
def run_test(
|
||||
rank: int,
|
||||
model: Any,
|
||||
config: Any,
|
||||
data: tuple,
|
||||
max_memory: int,
|
||||
print_code: bool = False,
|
||||
print_est_mem: bool = False,
|
||||
print_mem: bool = False,
|
||||
print_progress: bool = False,
|
||||
get_chunk_target: Any = None,
|
||||
) -> None:
|
||||
model = model(config=config)
|
||||
# launch colossalai
|
||||
colossalai.launch(
|
||||
config={},
|
||||
rank=rank,
|
||||
world_size=1,
|
||||
host="localhost",
|
||||
port=free_port(),
|
||||
backend="nccl",
|
||||
)
|
||||
|
||||
# build model and input
|
||||
chunks = assert_codegen_run(
|
||||
model,
|
||||
data=data,
|
||||
max_memory=max_memory,
|
||||
print_code=print_code,
|
||||
print_est_mem=print_est_mem,
|
||||
print_mem=print_mem,
|
||||
print_progress=print_progress,
|
||||
)
|
||||
|
||||
if get_chunk_target is not None:
|
||||
chunk_found = [i["region"] for i in chunks]
|
||||
chunk_target = get_chunk_target()[max_memory]
|
||||
assert (chunk_found == chunk_target), "found regions %s doesn't equal target regions %s" % (
|
||||
str(chunk_found),
|
||||
str(chunk_target),
|
||||
)
|
Reference in New Issue
Block a user