merge commit

This commit is contained in:
FrankLeeeee
2024-01-31 10:41:47 +08:00
306 changed files with 4053 additions and 9120 deletions

View File

@@ -8,11 +8,9 @@ import transformers
from transformers import AutoTokenizer, GenerationConfig
import colossalai
import colossalai.utils.device as device_utils
from colossalai.inference.config import InferenceConfig
from colossalai.inference.core.engine import InferenceEngine
from colossalai.accelerator import get_accelerator
from colossalai.inference import InferenceEngine
from colossalai.testing import clear_cache_before_run, rerun_if_address_is_in_use, spawn
from colossalai.utils.device import get_current_device
GIGABYTE = 1024**3
MEGABYTE = 1024 * 1024
@@ -55,7 +53,7 @@ CONFIG_MAP = {
def data_gen(batch_size: int = 4, seq_len: int = 512):
input_ids = torch.randint(10, 30000, (batch_size, seq_len), device=get_current_device())
input_ids = torch.randint(10, 30000, (batch_size, seq_len), device=get_accelerator().get_current_device())
return input_ids
@@ -78,9 +76,9 @@ def print_details_info(model_config, args, whole_end2end):
msg += f"Flops: {num_parameters * num_bytes / whole_avg_latency / 1e12:.2f} TFLOPS\n"
if torch.cuda.is_available():
msg += f"-------Memory Summary Device:{device_utils.current_device()}-------\n"
msg += f"Max memory allocated: {device_utils.max_memory_allocated() / GIGABYTE:.2f} GB\n"
msg += f"Max memory reserved: {device_utils.max_memory_reserved() / GIGABYTE:.2f} GB\n"
msg += f"-------Memory Summary Device:{get_accelerator().current_device()}-------\n"
msg += f"Max memory allocated: {get_accelerator().max_memory_allocated() / GIGABYTE:.2f} GB\n"
msg += f"Max memory reserved: {get_accelerator().max_memory_reserved() / GIGABYTE:.2f} GB\n"
print(msg)

View File

@@ -5,9 +5,9 @@ import torch.distributed as dist
from transformers import LlamaForCausalLM, LlamaTokenizer
import colossalai
from colossalai.accelerator import get_accelerator
from colossalai.inference import InferenceEngine
from colossalai.testing import spawn
from colossalai.utils.device import get_current_device
INPUT_TEXTS = [
"What is the longest river in the world?",
@@ -57,7 +57,7 @@ def run_inference(args):
)
inputs = tokenizer(INPUT_TEXTS, return_tensors="pt", padding="longest", max_length=max_input_len, truncation=True)
inputs = {k: v.to(get_current_device()) for k, v in inputs.items()}
inputs = {k: v.to(get_accelerator().get_current_device()) for k, v in inputs.items()}
outputs = engine.generate(inputs)
if rank == 0: