mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-10-20 06:09:05 +00:00
[zero] refactor low level zero for shard evenly (#4030)
* refactor low level zero * fix zero2 and support cpu offload * avg gradient and modify unit test * refactor grad store, support layer drop * refactor bucket store, support grad accumulation * fix and update unit test of zero and ddp * compatible with tp, ga and unit test * fix memory leak and polish * add zero layer drop unittest * polish code * fix import err in unit test * support diffenert comm dtype, modify docstring style * polish code * test padding and fix * fix unit test of low level zero * fix pad recording in bucket store * support some models * polish
This commit is contained in:
@@ -39,37 +39,37 @@ def exam_zero_1_2_grad_acc():
|
||||
overlap_communication=True,
|
||||
initial_scale=32,
|
||||
clip_grad_norm=1.0,
|
||||
grad_accumulate_interval=2,
|
||||
verbose=True)
|
||||
zero2_optimizer = LowLevelZeroOptimizer(zero2_optimizer,
|
||||
overlap_communication=True,
|
||||
partition_grad=True,
|
||||
initial_scale=32,
|
||||
clip_grad_norm=1.0)
|
||||
clip_grad_norm=1.0,
|
||||
grad_accumulate_interval=2)
|
||||
# create data
|
||||
seed_all(2021 + local_rank)
|
||||
input_data1 = torch.randn(32, 128).cuda()
|
||||
input_data2 = torch.randn(32, 128).cuda()
|
||||
|
||||
def fwd_bwd_func(number, cur_data):
|
||||
def fwd_bwd_func(number, cur_data, check_flag):
|
||||
# zero-dp forward
|
||||
zero1_output = zero1_model(cur_data)
|
||||
zero2_output = zero2_model(cur_data)
|
||||
assert torch.equal(zero1_output, zero2_output)
|
||||
|
||||
# zero-dp backward
|
||||
zero1_optimizer.backward(zero1_output.sum().float(), sync_grad=False)
|
||||
zero2_optimizer.backward(zero2_output.sum().float(), sync_grad=False)
|
||||
zero1_optimizer.backward(zero1_output.sum().float())
|
||||
zero2_optimizer.backward(zero2_output.sum().float())
|
||||
|
||||
for (n, z1p), z2p in zip(zero1_model.named_parameters(), zero2_model.parameters()):
|
||||
if z2p.grad is not None:
|
||||
# print(local_rank, n, z1p.shape, torch.max(z2p.grad), torch.max(torch.abs(z1p.grad - z2p.grad)))
|
||||
assert torch.equal(z1p.grad, z2p.grad)
|
||||
if check_flag:
|
||||
for (n, z1p), z2p in zip(zero1_model.named_parameters(), zero2_model.parameters()):
|
||||
if z2p.grad is not None:
|
||||
# print(local_rank, n, z1p.shape, torch.max(z2p.grad), torch.max(torch.abs(z1p.grad - z2p.grad)))
|
||||
assert torch.equal(z1p.grad, z2p.grad)
|
||||
|
||||
zero1_optimizer._sync_grad()
|
||||
zero2_optimizer._sync_grad()
|
||||
|
||||
fwd_bwd_func(0, input_data1)
|
||||
fwd_bwd_func(1, input_data2)
|
||||
fwd_bwd_func(0, input_data1, True)
|
||||
fwd_bwd_func(1, input_data2, False)
|
||||
|
||||
# step
|
||||
zero1_optimizer.step()
|
||||
@@ -101,7 +101,8 @@ def exam_zero_1_grad_acc():
|
||||
zero_optimizer = LowLevelZeroOptimizer(zero_optimizer,
|
||||
overlap_communication=False,
|
||||
reduce_bucket_size=262144,
|
||||
clip_grad_norm=1.0)
|
||||
clip_grad_norm=1.0,
|
||||
grad_accumulate_interval=2)
|
||||
|
||||
torch_optimizer = torch.optim.Adam(torch_model.parameters(), lr=1)
|
||||
|
||||
@@ -115,13 +116,19 @@ def exam_zero_1_grad_acc():
|
||||
zero_output = zero_model(cur_data)
|
||||
|
||||
# torch-ddp forward
|
||||
torch_output = torch_model(cur_data)
|
||||
assert torch.equal(zero_output, torch_output)
|
||||
|
||||
# zero-dp backward
|
||||
zero_optimizer.backward(zero_output.sum().float(), sync_grad=False)
|
||||
zero_optimizer.backward(zero_output.sum().float())
|
||||
# torch-ddp backward
|
||||
torch_output.sum().backward()
|
||||
if number < 1:
|
||||
with torch_model.no_sync():
|
||||
torch_output = torch_model(cur_data)
|
||||
assert torch.equal(zero_output, torch_output)
|
||||
torch_output.sum().backward()
|
||||
else:
|
||||
torch_output = torch_model(cur_data)
|
||||
assert torch.equal(zero_output, torch_output)
|
||||
torch_output.sum().backward()
|
||||
|
||||
if check_flag:
|
||||
# check grad
|
||||
@@ -129,8 +136,6 @@ def exam_zero_1_grad_acc():
|
||||
# print(n, p.shape, torch.max(torch.abs(p.grad - unscale_grad)))
|
||||
assert torch.equal(p.grad, z1p.grad)
|
||||
|
||||
zero_optimizer._sync_grad()
|
||||
|
||||
fwd_bwd_func(0, input_data1, True)
|
||||
fwd_bwd_func(1, input_data2, False)
|
||||
|
||||
@@ -148,7 +153,8 @@ def run_dist(rank, world_size, port):
|
||||
colossalai.launch(config=dict(), rank=rank, world_size=world_size, port=port, host='localhost')
|
||||
|
||||
exam_zero_1_grad_acc()
|
||||
exam_zero_1_2_grad_acc()
|
||||
# gradient accumulation is not compatible with ZeRO-2
|
||||
# exam_zero_1_2_grad_acc()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
|
@@ -2,6 +2,7 @@ import copy
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
import torch.nn as nn
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.testing import assert_close
|
||||
@@ -16,8 +17,9 @@ class MlpModel(nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
super(MlpModel, self).__init__()
|
||||
self.linear1 = nn.Linear(128, 256)
|
||||
self.linear2 = nn.Linear(256, 512)
|
||||
self.linear1 = nn.Linear(123, 253)
|
||||
self.linear_drop = nn.Linear(253, 253)
|
||||
self.linear2 = nn.Linear(253, 512)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.linear1(x)
|
||||
@@ -41,6 +43,16 @@ def loose_close(a, b, dtype: torch.dtype = torch.float32):
|
||||
assert_close(a, b, rtol=rtol, atol=atol)
|
||||
|
||||
|
||||
def split_ddp_grad(grad, world_size):
|
||||
with torch.no_grad():
|
||||
grad = grad.clone().detach().flatten()
|
||||
padding_size = (world_size - grad.numel() % world_size) % world_size
|
||||
if padding_size > 0:
|
||||
grad = torch.nn.functional.pad(grad, [0, padding_size])
|
||||
splited_grad = grad.split(grad.numel() // world_size)
|
||||
return splited_grad
|
||||
|
||||
|
||||
def exam_zero_1_2():
|
||||
"""
|
||||
In this test, we want to test whether zero stage 1 and 2
|
||||
@@ -72,23 +84,21 @@ def exam_zero_1_2():
|
||||
initial_scale=128)
|
||||
# create data
|
||||
seed_all(2001 + local_rank)
|
||||
input_data = torch.randn(32, 128).cuda()
|
||||
input_data = torch.randn(32, 123).cuda()
|
||||
|
||||
zero1_output = zero1_model(input_data)
|
||||
zero2_output = zero2_model(input_data)
|
||||
assert torch.equal(zero1_output, zero2_output)
|
||||
|
||||
# zero-dp backward
|
||||
zero1_optimizer.backward(zero1_output.mean().float(), sync_grad=False)
|
||||
zero2_optimizer.backward(zero2_output.mean().float(), sync_grad=False)
|
||||
zero1_optimizer.backward(zero1_output.mean().float())
|
||||
zero2_optimizer.backward(zero2_output.mean().float())
|
||||
|
||||
for (n, z1p), z2p in zip(zero1_model.named_parameters(), zero2_model.parameters()):
|
||||
if z2p.grad is not None:
|
||||
# print(local_rank, n, z1p.shape, torch.max(z2p.grad), torch.max(torch.abs(z1p.grad - z2p.grad)))
|
||||
assert torch.equal(z1p.grad, z2p.grad)
|
||||
|
||||
zero1_optimizer._sync_grad()
|
||||
zero2_optimizer._sync_grad()
|
||||
# check grad
|
||||
z1g_list = zero1_optimizer._grad_store.get_working_grads_by_group_id(0)
|
||||
z2g_list = zero2_optimizer._grad_store.get_working_grads_by_group_id(0)
|
||||
for z1g, z2g in zip(z1g_list, z2g_list):
|
||||
assert torch.equal(z1g, z2g)
|
||||
|
||||
# step
|
||||
zero1_optimizer.step()
|
||||
@@ -100,7 +110,7 @@ def exam_zero_1_2():
|
||||
|
||||
|
||||
@parameterize('dtype', [torch.float16, torch.bfloat16])
|
||||
def exam_zero_1_torch_ddp(dtype: torch.dtype):
|
||||
def exam_zero_1_torch_ddp(world_size, dtype: torch.dtype):
|
||||
"""
|
||||
In this test, two pairs of model and optimizers are created.
|
||||
1. zero: use sharded optimizer and fp16 parameters
|
||||
@@ -116,7 +126,7 @@ def exam_zero_1_torch_ddp(dtype: torch.dtype):
|
||||
torch_model = MlpModel().cuda()
|
||||
zero_model = copy.deepcopy(torch_model).to(dtype)
|
||||
|
||||
torch_model = DDP(torch_model.cuda(), bucket_cap_mb=0).cuda()
|
||||
torch_model = DDP(torch_model.cuda(), static_graph=True).cuda()
|
||||
|
||||
# create optimizer
|
||||
zero_optimizer = torch.optim.SGD(zero_model.parameters(), lr=1)
|
||||
@@ -133,7 +143,7 @@ def exam_zero_1_torch_ddp(dtype: torch.dtype):
|
||||
|
||||
seed_all(1453 + local_rank)
|
||||
# create
|
||||
input_data = torch.rand(32, 128).cuda()
|
||||
input_data = torch.rand(32, 123).cuda()
|
||||
|
||||
# zero-dp forward
|
||||
zero_output = zero_model(input_data.to(dtype))
|
||||
@@ -143,17 +153,20 @@ def exam_zero_1_torch_ddp(dtype: torch.dtype):
|
||||
loose_close(zero_output, torch_output, dtype=dtype)
|
||||
|
||||
# zero-dp backward
|
||||
zero_optimizer.backward(zero_output.mean().float(), sync_grad=False)
|
||||
zero_optimizer.backward(zero_output.mean().float())
|
||||
|
||||
# torch-ddp backward
|
||||
torch_output.mean().backward()
|
||||
|
||||
# check grad
|
||||
for (n, p), z1p in zip(torch_model.named_parameters(), zero_model.parameters()):
|
||||
loose_close(p.grad, z1p.grad, dtype=dtype)
|
||||
if p.grad is not None:
|
||||
zero_grad_list = zero_optimizer._grad_store.get_partitioned_gradients_by_param_id(0, id(z1p))
|
||||
torch_grad_list = split_ddp_grad(p.grad, world_size)
|
||||
for zero_grad, torch_grad in zip(zero_grad_list, torch_grad_list):
|
||||
loose_close(zero_grad, torch_grad, dtype=dtype)
|
||||
|
||||
# zero-dp step
|
||||
zero_optimizer._sync_grad()
|
||||
zero_optimizer.step()
|
||||
|
||||
# torch ddp step
|
||||
@@ -161,14 +174,13 @@ def exam_zero_1_torch_ddp(dtype: torch.dtype):
|
||||
|
||||
# check updated param
|
||||
for (n, p), z1p in zip(torch_model.named_parameters(), zero_model.parameters()):
|
||||
# print(n, torch.max(torch.abs(p.data - z1p.data)))
|
||||
loose_close(p.data, z1p.data, dtype=dtype)
|
||||
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
colossalai.launch(config=dict(), rank=rank, world_size=world_size, port=port, host='localhost')
|
||||
|
||||
exam_zero_1_torch_ddp()
|
||||
exam_zero_1_torch_ddp(world_size=world_size)
|
||||
exam_zero_1_2()
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user