mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-10-08 21:34:29 +00:00
[Inference]ADD Bench Chatglm2 script (#4963)
* add bench chatglm * fix bug and make utils --------- Co-authored-by: CjhHa1 <cjh18671720497outlook.com>
This commit is contained in:
@@ -1,12 +1,11 @@
|
||||
import argparse
|
||||
import logging
|
||||
import os
|
||||
import time
|
||||
|
||||
import torch
|
||||
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
|
||||
from auto_gptq.nn_modules.qlinear import GeneralQuantLinear
|
||||
from transformers import AutoTokenizer, BloomForCausalLM, BloomTokenizerFast, LlamaForCausalLM, LlamaTokenizer
|
||||
from _utils import print_perf_stats
|
||||
from auto_gptq import AutoGPTQForCausalLM
|
||||
from transformers import BloomTokenizerFast
|
||||
|
||||
import colossalai
|
||||
from colossalai.inference.tensor_parallel.engine import TPInferEngine
|
||||
@@ -14,30 +13,10 @@ from colossalai.logging import disable_existing_loggers
|
||||
from colossalai.shardformer import ShardConfig
|
||||
from colossalai.testing import clear_cache_before_run, rerun_if_address_is_in_use, spawn
|
||||
|
||||
os.environ['TRANSFORMERS_NO_ADVISORY_WARNINGS'] = 'true'
|
||||
|
||||
|
||||
def print_perf_stats(latency_set, config, bs, warmup=3):
|
||||
# trim warmup queries
|
||||
latency_set = list(latency_set)
|
||||
latency_set = latency_set[warmup:]
|
||||
count = len(latency_set)
|
||||
|
||||
if count > 0:
|
||||
latency_set.sort()
|
||||
avg = sum(latency_set) / count
|
||||
num_layers = getattr(config, "num_layers", config.num_hidden_layers)
|
||||
num_parameters = num_layers * config.hidden_size * config.hidden_size * 12
|
||||
num_bytes = 2 # float16
|
||||
|
||||
print("Avg Per Token Latency: {0:8.2f} ms".format(avg * 1000))
|
||||
print("Avg BW: {0:8.2f} GB/s".format(1 / avg * num_parameters * num_bytes / 1e9))
|
||||
print("Avg flops: {0:8.2f} TFlops/s".format(1 / avg * num_parameters * num_bytes * bs / 1e12))
|
||||
print("Avg Throughput: tokens/s: {}".format((1000 / (avg * 1000)) * bs))
|
||||
os.environ["TRANSFORMERS_NO_ADVISORY_WARNINGS"] = "true"
|
||||
|
||||
|
||||
def bench_bloom(args):
|
||||
|
||||
pretrained_model_dir = args.path
|
||||
quantized_model_dir = args.quantized_path
|
||||
max_batch_size = args.batch_size
|
||||
@@ -48,9 +27,9 @@ def bench_bloom(args):
|
||||
tokenizer.pad_token = tokenizer.eos_token
|
||||
|
||||
# load quantized model to the first GPU
|
||||
model = AutoGPTQForCausalLM.from_quantized(quantized_model_dir,
|
||||
device=torch.cuda.current_device(),
|
||||
inject_fused_attention=False)
|
||||
model = AutoGPTQForCausalLM.from_quantized(
|
||||
quantized_model_dir, device=torch.cuda.current_device(), inject_fused_attention=False
|
||||
)
|
||||
|
||||
model = model.half()
|
||||
|
||||
@@ -60,22 +39,22 @@ def bench_bloom(args):
|
||||
generate_kwargs = dict(max_new_tokens=max_output_len, do_sample=False)
|
||||
|
||||
input_tokens = {
|
||||
"input_ids": torch.randint(1, 1000, (max_batch_size, max_input_len), device='cuda'),
|
||||
"attention_mask": torch.ones((max_batch_size, max_input_len), device='cuda')
|
||||
"input_ids": torch.randint(1, 1000, (max_batch_size, max_input_len), device="cuda"),
|
||||
"attention_mask": torch.ones((max_batch_size, max_input_len), device="cuda"),
|
||||
}
|
||||
|
||||
# init TPInferEngine and shard the original model
|
||||
# To benchmark torch original, comment out the line of optimizing model
|
||||
shard_config = ShardConfig(enable_tensor_parallelism=True if args.tp_size > 1 else False,
|
||||
inference_only=True,
|
||||
inference_gptq=True)
|
||||
shard_config = ShardConfig(
|
||||
enable_tensor_parallelism=True if args.tp_size > 1 else False, inference_only=True, inference_gptq=True
|
||||
)
|
||||
infer_engine = TPInferEngine(model, shard_config, max_batch_size, max_input_len, max_output_len)
|
||||
|
||||
# prepare data for generation
|
||||
generate_kwargs = dict(max_new_tokens=max_output_len, do_sample=False)
|
||||
input_tokens = {
|
||||
"input_ids": torch.randint(10, 1000, (max_batch_size, max_input_len)),
|
||||
"attention_mask": torch.ones((max_batch_size, max_input_len))
|
||||
"attention_mask": torch.ones((max_batch_size, max_input_len)),
|
||||
}
|
||||
for t in input_tokens:
|
||||
if torch.is_tensor(input_tokens[t]):
|
||||
@@ -99,7 +78,7 @@ def bench_bloom(args):
|
||||
|
||||
def check_bloom(rank, world_size, port, args):
|
||||
disable_existing_loggers()
|
||||
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
colossalai.launch(config={}, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
||||
bench_bloom(args)
|
||||
|
||||
|
||||
@@ -111,12 +90,12 @@ def test_bloom(args):
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('-p', '--path', type=str, help='Model path', required=True)
|
||||
parser.add_argument('-q', '--quantized_path', type=str, help='Model path', required=True)
|
||||
parser.add_argument('-tp', '--tp_size', type=int, default=1, help='Tensor parallel size')
|
||||
parser.add_argument('-b', '--batch_size', type=int, default=16, help='Maximum batch size')
|
||||
parser.add_argument('--input_len', type=int, default=1024, help='Maximum input length')
|
||||
parser.add_argument('--output_len', type=int, default=128, help='Maximum output length')
|
||||
parser.add_argument("-p", "--path", type=str, help="Model path", required=True)
|
||||
parser.add_argument("-q", "--quantized_path", type=str, help="Model path", required=True)
|
||||
parser.add_argument("-tp", "--tp_size", type=int, default=1, help="Tensor parallel size")
|
||||
parser.add_argument("-b", "--batch_size", type=int, default=16, help="Maximum batch size")
|
||||
parser.add_argument("--input_len", type=int, default=1024, help="Maximum input length")
|
||||
parser.add_argument("--output_len", type=int, default=128, help="Maximum output length")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
|
Reference in New Issue
Block a user