mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-05 11:02:05 +00:00
[autoparallel] Patch meta information of torch.where
(#2822)
* [autoparallel] patch meta information of torch.where * [autoparallel] pre-commit modified
This commit is contained in:
@@ -0,0 +1,104 @@
|
||||
import pytest
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
import torch.nn as nn
|
||||
|
||||
from colossalai.auto_parallel.tensor_shard.node_handler import LinearModuleHandler
|
||||
from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
|
||||
MemoryCost,
|
||||
OperationData,
|
||||
OperationDataType,
|
||||
ShardingStrategy,
|
||||
StrategiesVector,
|
||||
TrainCycleItem,
|
||||
)
|
||||
from colossalai.device.device_mesh import DeviceMesh
|
||||
from colossalai.fx import ColoGraphModule, ColoTracer
|
||||
from colossalai.initialize import launch
|
||||
from colossalai.logging import disable_existing_loggers
|
||||
from colossalai.testing.pytest_wrapper import run_on_environment_flag
|
||||
from colossalai.testing.utils import parameterize, rerun_if_address_is_in_use
|
||||
from colossalai.utils import free_port
|
||||
from tests.test_auto_parallel.test_tensor_shard.test_metainfo.utils import print_results
|
||||
|
||||
if torch.__version__ >= '1.12.0':
|
||||
from colossalai.auto_parallel.meta_profiler import MetaInfo, meta_register
|
||||
|
||||
|
||||
@pytest.mark.skipif(torch.__version__ < '1.12.0', reason="need pytorch 1.12.0 or higher for aten level operations")
|
||||
def test_where_meta_info():
|
||||
meta_func = meta_register.get(torch.where)
|
||||
|
||||
# construct meta tensors
|
||||
condition_tensor = torch.rand(1, 1, 1024, 1024) > 0.5
|
||||
condition_tensor = condition_tensor.to(device="meta")
|
||||
x_tensor = torch.rand(8, 16, 1024, 1024, device="meta")
|
||||
y_tensor = torch.tensor(0, device="meta")
|
||||
output_tensor = torch.rand(8, 16, 1024, 1024)
|
||||
|
||||
# construct operation data
|
||||
condition_data = OperationData(
|
||||
name="condition",
|
||||
data=condition_tensor,
|
||||
type=OperationDataType.ARG,
|
||||
logical_shape=condition_tensor.shape,
|
||||
)
|
||||
x_data = OperationData(
|
||||
name="x",
|
||||
data=x_tensor,
|
||||
type=OperationDataType.ARG,
|
||||
logical_shape=x_tensor.shape,
|
||||
)
|
||||
y_data = OperationData(
|
||||
name="y",
|
||||
data=y_tensor,
|
||||
type=OperationDataType.ARG,
|
||||
logical_shape=y_tensor.shape,
|
||||
)
|
||||
output_data = OperationData(
|
||||
name="output",
|
||||
data=output_tensor,
|
||||
type=OperationDataType.OUTPUT,
|
||||
logical_shape=output_tensor.shape,
|
||||
)
|
||||
|
||||
# construct args and kwargs
|
||||
args = [condition_data, x_data, y_data, output_data]
|
||||
kwargs = {'inplace': False}
|
||||
|
||||
# estimated results
|
||||
compute_cost, memory_cost, fwd_in, fwd_buffer, fwd_out = meta_func(*args, **kwargs)
|
||||
|
||||
# actual results
|
||||
condition_real_tensor = torch.rand(1, 1, 1024, 1024) > 0.5
|
||||
condition_real_tensor = condition_real_tensor.to(device="cuda")
|
||||
x_real_tensor = torch.rand(8, 16, 1024, 1024, device="cuda")
|
||||
y_real_tensor = torch.tensor(0.0, device="cuda")
|
||||
|
||||
x_real_tensor.requires_grad = True
|
||||
y_real_tensor.requires_grad = True
|
||||
|
||||
# fwd
|
||||
torch.cuda.reset_peak_memory_stats()
|
||||
mem_stamp0 = torch.cuda.memory_allocated()
|
||||
output_real_tensor = torch.where(condition_real_tensor, x_real_tensor, y_real_tensor)
|
||||
fwd_allocated = torch.cuda.memory_allocated() - mem_stamp0
|
||||
fwd_peak = torch.cuda.max_memory_allocated() - mem_stamp0
|
||||
|
||||
# bwd
|
||||
upstream_grad = torch.rand_like(output_real_tensor)
|
||||
torch.cuda.reset_peak_memory_stats()
|
||||
mem_stamp0 = torch.cuda.memory_allocated()
|
||||
torch.autograd.backward(output_real_tensor, upstream_grad)
|
||||
bwd_allocated = torch.cuda.memory_allocated() - mem_stamp0
|
||||
bwd_peak = torch.cuda.max_memory_allocated() - mem_stamp0
|
||||
|
||||
compute_cost: TrainCycleItem
|
||||
memory_cost: TrainCycleItem
|
||||
|
||||
print_results([condition_real_tensor, x_real_tensor, y_real_tensor], [output_real_tensor], compute_cost,
|
||||
memory_cost, fwd_allocated, fwd_peak, bwd_allocated, bwd_peak)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_where_meta_info()
|
Reference in New Issue
Block a user