mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-08-31 16:40:41 +00:00
[NFC] polish colossalai/utils/tensor_detector/tensor_detector.py code style (#1566)
This commit is contained in:
@@ -5,18 +5,17 @@ import torch.nn as nn
|
|||||||
from typing import Optional
|
from typing import Optional
|
||||||
from collections import defaultdict
|
from collections import defaultdict
|
||||||
|
|
||||||
|
|
||||||
LINE_WIDTH = 108
|
LINE_WIDTH = 108
|
||||||
LINE = '-' * LINE_WIDTH + '\n'
|
LINE = '-' * LINE_WIDTH + '\n'
|
||||||
|
|
||||||
|
|
||||||
class TensorDetector():
|
class TensorDetector():
|
||||||
|
|
||||||
def __init__(self,
|
def __init__(self,
|
||||||
show_info: bool = True,
|
show_info: bool = True,
|
||||||
log: str = None,
|
log: str = None,
|
||||||
include_cpu: bool = False,
|
include_cpu: bool = False,
|
||||||
module: Optional[nn.Module] = None
|
module: Optional[nn.Module] = None):
|
||||||
):
|
|
||||||
"""This class is a detector to detect tensor on different devices.
|
"""This class is a detector to detect tensor on different devices.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
@@ -28,7 +27,7 @@ class TensorDetector():
|
|||||||
"""
|
"""
|
||||||
self.show_info = show_info
|
self.show_info = show_info
|
||||||
self.log = log
|
self.log = log
|
||||||
self.include_cpu = include_cpu
|
self.include_cpu = include_cpu
|
||||||
self.tensor_info = defaultdict(list)
|
self.tensor_info = defaultdict(list)
|
||||||
self.saved_tensor_info = defaultdict(list)
|
self.saved_tensor_info = defaultdict(list)
|
||||||
self.order = []
|
self.order = []
|
||||||
@@ -57,13 +56,13 @@ class TensorDetector():
|
|||||||
|
|
||||||
def mem_format(self, real_memory_size):
|
def mem_format(self, real_memory_size):
|
||||||
# format the tensor memory into a reasonal magnitude
|
# format the tensor memory into a reasonal magnitude
|
||||||
if real_memory_size >= 2 ** 30:
|
if real_memory_size >= 2**30:
|
||||||
return str(real_memory_size / (2 ** 30)) + ' GB'
|
return str(real_memory_size / (2**30)) + ' GB'
|
||||||
if real_memory_size >= 2 ** 20:
|
if real_memory_size >= 2**20:
|
||||||
return str(real_memory_size / (2 ** 20)) + ' MB'
|
return str(real_memory_size / (2**20)) + ' MB'
|
||||||
if real_memory_size >= 2 ** 10:
|
if real_memory_size >= 2**10:
|
||||||
return str(real_memory_size / (2 ** 10)) + ' KB'
|
return str(real_memory_size / (2**10)) + ' KB'
|
||||||
return str(real_memory_size) + ' B'
|
return str(real_memory_size) + ' B'
|
||||||
|
|
||||||
def collect_tensors_state(self):
|
def collect_tensors_state(self):
|
||||||
for obj in gc.get_objects():
|
for obj in gc.get_objects():
|
||||||
@@ -74,11 +73,11 @@ class TensorDetector():
|
|||||||
self.detected.append(id(obj))
|
self.detected.append(id(obj))
|
||||||
# skip paramters we had added in __init__ when module is an instance of nn.Module for the first epoch
|
# skip paramters we had added in __init__ when module is an instance of nn.Module for the first epoch
|
||||||
if id(obj) not in self.tensor_info:
|
if id(obj) not in self.tensor_info:
|
||||||
|
|
||||||
name = type(obj).__name__
|
name = type(obj).__name__
|
||||||
# after backward, we want to update the records, to show you the change
|
# after backward, we want to update the records, to show you the change
|
||||||
if isinstance(self.module, nn.Module) and name == 'Parameter':
|
if isinstance(self.module, nn.Module) and name == 'Parameter':
|
||||||
if obj.grad is not None:
|
if obj.grad is not None:
|
||||||
# with grad attached
|
# with grad attached
|
||||||
for par_name, param in self.module.named_parameters():
|
for par_name, param in self.module.named_parameters():
|
||||||
if param.requires_grad and param.grad.equal(obj.grad):
|
if param.requires_grad and param.grad.equal(obj.grad):
|
||||||
@@ -88,7 +87,7 @@ class TensorDetector():
|
|||||||
# there will be no new paramters created during running
|
# there will be no new paramters created during running
|
||||||
# so it must be in saved_tensor_info
|
# so it must be in saved_tensor_info
|
||||||
continue
|
continue
|
||||||
# we can also marked common tensors as tensor(with grad)
|
# we can also marked common tensors as tensor(with grad)
|
||||||
if name == 'Tensor' and (obj.is_leaf or obj.retains_grad):
|
if name == 'Tensor' and (obj.is_leaf or obj.retains_grad):
|
||||||
if obj.grad is not None:
|
if obj.grad is not None:
|
||||||
name = name + ' (with grad)'
|
name = name + ' (with grad)'
|
||||||
@@ -104,7 +103,7 @@ class TensorDetector():
|
|||||||
self.tensor_info[id(obj)].append(obj.dtype)
|
self.tensor_info[id(obj)].append(obj.dtype)
|
||||||
self.tensor_info[id(obj)].append(self.get_tensor_mem(obj))
|
self.tensor_info[id(obj)].append(self.get_tensor_mem(obj))
|
||||||
# recorded the order we got the tensor
|
# recorded the order we got the tensor
|
||||||
# by this we can guess the tensor easily
|
# by this we can guess the tensor easily
|
||||||
# it will record every tensor updated this turn
|
# it will record every tensor updated this turn
|
||||||
self.order.append(id(obj))
|
self.order.append(id(obj))
|
||||||
# recorded all different devices
|
# recorded all different devices
|
||||||
@@ -114,7 +113,7 @@ class TensorDetector():
|
|||||||
def print_tensors_state(self):
|
def print_tensors_state(self):
|
||||||
template_format = '{:3s}{:<30s}{:>10s}{:>20s}{:>10s}{:>20s}{:>15s}'
|
template_format = '{:3s}{:<30s}{:>10s}{:>20s}{:>10s}{:>20s}{:>15s}'
|
||||||
self.info += LINE
|
self.info += LINE
|
||||||
self.info += template_format.format(' ', 'Tensor', 'device', 'shape', 'grad', 'dtype', 'Mem')
|
self.info += template_format.format(' ', 'Tensor', 'device', 'shape', 'grad', 'dtype', 'Mem')
|
||||||
self.info += '\n'
|
self.info += '\n'
|
||||||
self.info += LINE
|
self.info += LINE
|
||||||
|
|
||||||
@@ -122,36 +121,33 @@ class TensorDetector():
|
|||||||
# it should be updated in the saved_tensor_info as well
|
# it should be updated in the saved_tensor_info as well
|
||||||
outdated = [x for x in self.saved_tensor_info.keys() if x in self.order]
|
outdated = [x for x in self.saved_tensor_info.keys() if x in self.order]
|
||||||
minus = [x for x in self.saved_tensor_info.keys() if x not in self.detected]
|
minus = [x for x in self.saved_tensor_info.keys() if x not in self.detected]
|
||||||
minus = outdated + minus
|
minus = outdated + minus
|
||||||
if len(self.order) > 0:
|
if len(self.order) > 0:
|
||||||
for tensor_id in self.order:
|
for tensor_id in self.order:
|
||||||
self.info += template_format.format('+',
|
self.info += template_format.format('+', str(self.tensor_info[tensor_id][0]),
|
||||||
str(self.tensor_info[tensor_id][0]),
|
str(self.tensor_info[tensor_id][1]),
|
||||||
str(self.tensor_info[tensor_id][1]),
|
str(tuple(self.tensor_info[tensor_id][2])),
|
||||||
str(tuple(self.tensor_info[tensor_id][2])),
|
str(self.tensor_info[tensor_id][3]),
|
||||||
str(self.tensor_info[tensor_id][3]),
|
str(self.tensor_info[tensor_id][4]),
|
||||||
str(self.tensor_info[tensor_id][4]),
|
str(self.tensor_info[tensor_id][5]))
|
||||||
str(self.tensor_info[tensor_id][5]))
|
|
||||||
self.info += '\n'
|
self.info += '\n'
|
||||||
if len(self.order) > 0 and len(minus) > 0:
|
if len(self.order) > 0 and len(minus) > 0:
|
||||||
self.info += '\n'
|
self.info += '\n'
|
||||||
if len(minus) > 0:
|
if len(minus) > 0:
|
||||||
for tensor_id in minus:
|
for tensor_id in minus:
|
||||||
self.info += template_format.format('-',
|
self.info += template_format.format('-', str(self.saved_tensor_info[tensor_id][0]),
|
||||||
str(self.saved_tensor_info[tensor_id][0]),
|
str(self.saved_tensor_info[tensor_id][1]),
|
||||||
str(self.saved_tensor_info[tensor_id][1]),
|
str(tuple(self.saved_tensor_info[tensor_id][2])),
|
||||||
str(tuple(self.saved_tensor_info[tensor_id][2])),
|
str(self.saved_tensor_info[tensor_id][3]),
|
||||||
str(self.saved_tensor_info[tensor_id][3]),
|
str(self.saved_tensor_info[tensor_id][4]),
|
||||||
str(self.saved_tensor_info[tensor_id][4]),
|
str(self.saved_tensor_info[tensor_id][5]))
|
||||||
str(self.saved_tensor_info[tensor_id][5]))
|
|
||||||
self.info += '\n'
|
self.info += '\n'
|
||||||
# deleted the updated tensor
|
# deleted the updated tensor
|
||||||
self.saved_tensor_info.pop(tensor_id)
|
self.saved_tensor_info.pop(tensor_id)
|
||||||
|
|
||||||
|
|
||||||
# trace where is the detect()
|
# trace where is the detect()
|
||||||
locate_info = inspect.stack()[2]
|
locate_info = inspect.stack()[2]
|
||||||
locate_msg = '"' + locate_info.filename + '" line ' + str(locate_info.lineno)
|
locate_msg = '"' + locate_info.filename + '" line ' + str(locate_info.lineno)
|
||||||
|
|
||||||
self.info += LINE
|
self.info += LINE
|
||||||
self.info += f"Detect Location: {locate_msg}\n"
|
self.info += f"Detect Location: {locate_msg}\n"
|
||||||
@@ -167,8 +163,8 @@ class TensorDetector():
|
|||||||
if self.log is not None:
|
if self.log is not None:
|
||||||
with open(self.log + '.log', 'a') as f:
|
with open(self.log + '.log', 'a') as f:
|
||||||
f.write(self.info)
|
f.write(self.info)
|
||||||
|
|
||||||
def detect(self, include_cpu = False):
|
def detect(self, include_cpu=False):
|
||||||
self.include_cpu = include_cpu
|
self.include_cpu = include_cpu
|
||||||
self.collect_tensors_state()
|
self.collect_tensors_state()
|
||||||
self.print_tensors_state()
|
self.print_tensors_state()
|
||||||
@@ -180,4 +176,4 @@ class TensorDetector():
|
|||||||
|
|
||||||
def close(self):
|
def close(self):
|
||||||
self.saved_tensor_info.clear()
|
self.saved_tensor_info.clear()
|
||||||
self.module = None
|
self.module = None
|
||||||
|
Reference in New Issue
Block a user