mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-06 03:20:52 +00:00
[ColossalQA] refactor server and webui & add new feature (#5138)
* refactor server and webui & add new feature * add requirements * modify readme and ui
This commit is contained in:
@@ -1,3 +1,4 @@
|
||||
import os
|
||||
from typing import Dict, Tuple
|
||||
|
||||
from colossalqa.chain.retrieval_qa.base import RetrievalQA
|
||||
@@ -12,29 +13,11 @@ from colossalqa.prompt.prompt import (
|
||||
ZH_RETRIEVAL_QA_TRIGGER_KEYWORDS,
|
||||
)
|
||||
from colossalqa.retriever import CustomRetriever
|
||||
from colossalqa.text_splitter import ChineseTextSplitter
|
||||
from langchain import LLMChain
|
||||
from langchain.embeddings import HuggingFaceEmbeddings
|
||||
|
||||
logger = get_logger()
|
||||
|
||||
DEFAULT_RAG_CFG = {
|
||||
"retri_top_k": 3,
|
||||
"retri_kb_file_path": "./",
|
||||
"verbose": True,
|
||||
"mem_summary_prompt": SUMMARY_PROMPT_ZH,
|
||||
"mem_human_prefix": "用户",
|
||||
"mem_ai_prefix": "Assistant",
|
||||
"mem_max_tokens": 2000,
|
||||
"mem_llm_kwargs": {"max_new_tokens": 50, "temperature": 1, "do_sample": True},
|
||||
"disambig_prompt": PROMPT_DISAMBIGUATE_ZH,
|
||||
"disambig_llm_kwargs": {"max_new_tokens": 30, "temperature": 1, "do_sample": True},
|
||||
"embed_model_name_or_path": "moka-ai/m3e-base",
|
||||
"embed_model_device": {"device": "cpu"},
|
||||
"gen_llm_kwargs": {"max_new_tokens": 100, "temperature": 1, "do_sample": True},
|
||||
"gen_qa_prompt": PROMPT_RETRIEVAL_QA_ZH,
|
||||
}
|
||||
|
||||
|
||||
class RAG_ChatBot:
|
||||
def __init__(
|
||||
@@ -44,13 +27,16 @@ class RAG_ChatBot:
|
||||
) -> None:
|
||||
self.llm = llm
|
||||
self.rag_config = rag_config
|
||||
self.set_embed_model(**self.rag_config)
|
||||
self.set_text_splitter(**self.rag_config)
|
||||
self.set_memory(**self.rag_config)
|
||||
self.set_info_retriever(**self.rag_config)
|
||||
self.set_rag_chain(**self.rag_config)
|
||||
if self.rag_config.get("disambig_prompt", None):
|
||||
self.set_disambig_retriv(**self.rag_config)
|
||||
self.set_embed_model(**self.rag_config["embed"])
|
||||
self.set_text_splitter(**self.rag_config["splitter"])
|
||||
self.set_memory(**self.rag_config["chain"])
|
||||
self.set_info_retriever(**self.rag_config["retrieval"])
|
||||
self.set_rag_chain(**self.rag_config["chain"])
|
||||
if self.rag_config["chain"].get("disambig_prompt", None):
|
||||
self.set_disambig_retriv(**self.rag_config["chain"])
|
||||
|
||||
self.documents = []
|
||||
self.docs_names = []
|
||||
|
||||
def set_embed_model(self, **kwargs):
|
||||
self.embed_model = HuggingFaceEmbeddings(
|
||||
@@ -61,7 +47,7 @@ class RAG_ChatBot:
|
||||
|
||||
def set_text_splitter(self, **kwargs):
|
||||
# Initialize text_splitter
|
||||
self.text_splitter = ChineseTextSplitter()
|
||||
self.text_splitter = kwargs["name"]()
|
||||
|
||||
def set_memory(self, **kwargs):
|
||||
params = {"llm_kwargs": kwargs["mem_llm_kwargs"]} if kwargs.get("mem_llm_kwargs", None) else {}
|
||||
@@ -91,10 +77,6 @@ class RAG_ChatBot:
|
||||
**params,
|
||||
)
|
||||
|
||||
def split_docs(self, documents):
|
||||
doc_splits = self.text_splitter.split_documents(documents)
|
||||
return doc_splits
|
||||
|
||||
def set_disambig_retriv(self, **kwargs):
|
||||
params = {"llm_kwargs": kwargs["disambig_llm_kwargs"]} if kwargs.get("disambig_llm_kwargs", None) else {}
|
||||
self.llm_chain_disambiguate = LLMChain(llm=self.llm, prompt=kwargs["disambig_prompt"], **params)
|
||||
@@ -106,42 +88,50 @@ class RAG_ChatBot:
|
||||
self.info_retriever.set_rephrase_handler(disambiguity)
|
||||
|
||||
def load_doc_from_console(self, json_parse_args: Dict = {}):
|
||||
documents = []
|
||||
print("Select files for constructing Chinese retriever")
|
||||
print("Select files for constructing the retriever")
|
||||
while True:
|
||||
file = input("Enter a file path or press Enter directly without input to exit:").strip()
|
||||
if file == "":
|
||||
break
|
||||
data_name = input("Enter a short description of the data:")
|
||||
docs = DocumentLoader([[file, data_name.replace(" ", "_")]], **json_parse_args).all_data
|
||||
documents.extend(docs)
|
||||
self.documents = documents
|
||||
self.split_docs_and_add_to_mem(**self.rag_config)
|
||||
self.documents.extend(docs)
|
||||
self.docs_names.append(data_name)
|
||||
self.split_docs_and_add_to_mem(**self.rag_config["chain"])
|
||||
|
||||
def load_doc_from_files(self, files, data_name="default_kb", json_parse_args: Dict = {}):
|
||||
documents = []
|
||||
for file in files:
|
||||
docs = DocumentLoader([[file, data_name.replace(" ", "_")]], **json_parse_args).all_data
|
||||
documents.extend(docs)
|
||||
self.documents = documents
|
||||
self.split_docs_and_add_to_mem(**self.rag_config)
|
||||
self.documents.extend(docs)
|
||||
self.docs_names.append(os.path.basename(file))
|
||||
self.split_docs_and_add_to_mem(**self.rag_config["chain"])
|
||||
|
||||
def split_docs_and_add_to_mem(self, **kwargs):
|
||||
self.doc_splits = self.split_docs(self.documents)
|
||||
doc_splits = self.split_docs(self.documents)
|
||||
self.info_retriever.add_documents(
|
||||
docs=self.doc_splits, cleanup="incremental", mode="by_source", embedding=self.embed_model
|
||||
docs=doc_splits, cleanup="incremental", mode="by_source", embedding=self.embed_model
|
||||
)
|
||||
self.memory.initiate_document_retrieval_chain(self.llm, kwargs["gen_qa_prompt"], self.info_retriever)
|
||||
|
||||
def split_docs(self, documents):
|
||||
doc_splits = self.text_splitter.split_documents(documents)
|
||||
return doc_splits
|
||||
|
||||
def clear_docs(self, **kwargs):
|
||||
self.documents = []
|
||||
self.docs_names = []
|
||||
self.info_retriever.clear_documents()
|
||||
self.memory.initiate_document_retrieval_chain(self.llm, kwargs["gen_qa_prompt"], self.info_retriever)
|
||||
|
||||
def reset_config(self, rag_config):
|
||||
self.rag_config = rag_config
|
||||
self.set_embed_model(**self.rag_config)
|
||||
self.set_text_splitter(**self.rag_config)
|
||||
self.set_memory(**self.rag_config)
|
||||
self.set_info_retriever(**self.rag_config)
|
||||
self.set_rag_chain(**self.rag_config)
|
||||
if self.rag_config.get("disambig_prompt", None):
|
||||
self.set_disambig_retriv(**self.rag_config)
|
||||
self.set_embed_model(**self.rag_config["embed"])
|
||||
self.set_text_splitter(**self.rag_config["splitter"])
|
||||
self.set_memory(**self.rag_config["chain"])
|
||||
self.set_info_retriever(**self.rag_config["retrieval"])
|
||||
self.set_rag_chain(**self.rag_config["chain"])
|
||||
if self.rag_config["chain"].get("disambig_prompt", None):
|
||||
self.set_disambig_retriv(**self.rag_config["chain"])
|
||||
|
||||
def run(self, user_input: str, memory: ConversationBufferWithSummary) -> Tuple[str, ConversationBufferWithSummary]:
|
||||
if memory:
|
||||
@@ -153,7 +143,7 @@ class RAG_ChatBot:
|
||||
rejection_trigger_keywrods=ZH_RETRIEVAL_QA_TRIGGER_KEYWORDS,
|
||||
rejection_answer=ZH_RETRIEVAL_QA_REJECTION_ANSWER,
|
||||
)
|
||||
return result.split("\n")[0], memory
|
||||
return result, memory
|
||||
|
||||
def start_test_session(self):
|
||||
"""
|
||||
@@ -170,15 +160,18 @@ class RAG_ChatBot:
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Initialize an Langchain LLM(here we use ChatGPT as an example)
|
||||
import config
|
||||
from langchain.llms import OpenAI
|
||||
|
||||
llm = OpenAI(openai_api_key="YOUR_OPENAI_API_KEY")
|
||||
# you need to: export OPENAI_API_KEY="YOUR_OPENAI_API_KEY"
|
||||
llm = OpenAI(openai_api_key=os.getenv("OPENAI_API_KEY"))
|
||||
|
||||
# chatgpt cannot control temperature, do_sample, etc.
|
||||
DEFAULT_RAG_CFG["mem_llm_kwargs"] = None
|
||||
DEFAULT_RAG_CFG["disambig_llm_kwargs"] = None
|
||||
DEFAULT_RAG_CFG["gen_llm_kwargs"] = None
|
||||
all_config = config.ALL_CONFIG
|
||||
all_config["chain"]["mem_llm_kwargs"] = None
|
||||
all_config["chain"]["disambig_llm_kwargs"] = None
|
||||
all_config["chain"]["gen_llm_kwargs"] = None
|
||||
|
||||
rag = RAG_ChatBot(llm, DEFAULT_RAG_CFG)
|
||||
rag = RAG_ChatBot(llm, all_config)
|
||||
rag.load_doc_from_console()
|
||||
rag.start_test_session()
|
||||
|
Reference in New Issue
Block a user