[autoparallel] patch torch.flatten metainfo for autoparallel (#2247)

* [autoparallel] patch torch.flatten
This commit is contained in:
Boyuan Yao
2023-01-02 15:51:03 +08:00
committed by GitHub
parent 8897b8f753
commit c8c79102f0
2 changed files with 6 additions and 4 deletions

View File

@@ -14,6 +14,7 @@ __all__ = ["avgpool_meta_info", "maxpool_meta_info"]
@meta_register.register(torch.nn.AdaptiveAvgPool1d)
@meta_register.register(torch.nn.AdaptiveAvgPool2d)
@meta_register.register(torch.nn.AdaptiveAvgPool3d)
@meta_register.register(torch.flatten)
def avgpool_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]:
"""Meta info for AdaptiveAvgPool
The aten graph of AdaptiveAvgPool is
@@ -32,6 +33,7 @@ def avgpool_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem,
input_tensor = args[0].data
output_tensor = next(filter(lambda x: x.type == OperationDataType.OUTPUT, args)).data
is_inplace = kwargs.get("inplace", False)
# construct forward args for flop mapping
fwd_in_args = [input_tensor]
@@ -51,8 +53,8 @@ def avgpool_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem,
compute_cost = TrainCycleItem(fwd=fwd_compute_cost, bwd=bwd_compute_cost, total=fwd_compute_cost + bwd_compute_cost)
# calculate memory cost
fwd_mem_cost = MemoryCost(activation=activation_size(output_tensor))
bwd_mem_cost = MemoryCost(activation=activation_size(input_tensor))
fwd_mem_cost = MemoryCost() if is_inplace else MemoryCost(activation=activation_size(output_tensor))
bwd_mem_cost = MemoryCost() if is_inplace else MemoryCost(activation=activation_size(input_tensor))
# total cost
total_mem_cost = MemoryCost(activation=fwd_mem_cost.activation + bwd_mem_cost.activation)