[MOE] support PR-MOE (#488)

This commit is contained in:
HELSON
2022-03-22 16:48:22 +08:00
committed by GitHub
parent a9ecb4b244
commit c9023d4078
3 changed files with 133 additions and 18 deletions

View File

@@ -4,11 +4,12 @@ import torch.nn as nn
from colossalai.context import ParallelMode
from colossalai.nn.layer import VanillaPatchEmbedding, VanillaClassifier, \
WrappedDropout as Dropout, WrappedDropPath as DropPath
from colossalai.nn.layer.moe import build_ffn_experts, MoeLayer, Top2Router, NormalNoiseGenerator
from colossalai.nn.layer.moe import build_ffn_experts, MoeLayer, Top2Router, NormalNoiseGenerator, MoeModule
from .util import moe_sa_args, moe_mlp_args
from ..helper import TransformerLayer
from colossalai.core import MOE_CONTEXT
from colossalai.utils import get_current_device
from typing import List
class VanillaSelfAttention(nn.Module):
@@ -146,7 +147,8 @@ class Widenet(nn.Module):
class ViTMoE(nn.Module):
def __init__(self,
num_experts: int,
num_experts: int or List[int],
use_residual: bool = False,
capacity_factor_train: float = 1.25,
capacity_factor_eval: float = 2.0,
drop_tks: bool = True,
@@ -164,29 +166,45 @@ class ViTMoE(nn.Module):
drop_path: float = 0.):
super().__init__()
assert depth % 2 == 0, "The number of layers should be even right now"
if isinstance(num_experts, list):
assert len(num_experts) == depth // 2, \
"The length of num_experts should equal to the number of MOE layers"
num_experts_list = num_experts
else:
num_experts_list = [num_experts] * (depth // 2)
embedding = VanillaPatchEmbedding(img_size=img_size,
patch_size=patch_size,
in_chans=in_chans,
embed_size=d_model)
embed_dropout = Dropout(p=drop_rate, mode=ParallelMode.TENSOR)
noisy_func = NormalNoiseGenerator(num_experts)
router = Top2Router(capacity_factor_train=capacity_factor_train,
capacity_factor_eval=capacity_factor_eval,
noisy_func=noisy_func,
drop_tks=drop_tks)
assert depth % 2 == 0
# stochastic depth decay rule
dpr = [x.item() for x in torch.linspace(0, drop_path, depth)]
blocks = []
for i in range(depth):
sa = VanillaSelfAttention(**moe_sa_args(
d_model=d_model, n_heads=num_heads, d_kv=d_kv, attention_drop=attention_drop, drop_rate=drop_rate))
ffn = VanillaFFN(**moe_mlp_args(
d_model=d_model, d_ff=d_ff, drop_rate=drop_rate)) if i % 2 == 0 else \
MoeLayer(dim_model=d_model, num_experts=num_experts, router=router,
experts=build_ffn_experts(num_experts, d_model, d_ff, drop_rate=drop_rate))
if i % 2 == 0:
ffn = VanillaFFN(**moe_mlp_args(d_model=d_model, d_ff=d_ff, drop_rate=drop_rate))
else:
num_experts = num_experts_list[i // 2]
experts = build_ffn_experts(num_experts, d_model, d_ff, drop_rate=drop_rate)
ffn = MoeModule(dim_model=d_model,
num_experts=num_experts,
top_k=1 if use_residual else 2,
capacity_factor_train=capacity_factor_train,
capacity_factor_eval=capacity_factor_eval,
noisy_policy='Jitter' if use_residual else 'Gaussian',
drop_tks=drop_tks,
use_residual=use_residual,
expert_instance=experts,
expert_cls=VanillaFFN,
**moe_mlp_args(d_model=d_model, d_ff=d_ff, drop_rate=drop_rate))
layer = TransformerLayer(att=sa,
ffn=ffn,
norm1=nn.LayerNorm(d_model, eps=1e-6),