[tensor] distributed checkpointing for parameters (#1240)

This commit is contained in:
Jiarui Fang
2022-07-12 15:51:06 +08:00
committed by GitHub
parent 49114d8df0
commit c92f84fcdb
6 changed files with 72 additions and 155 deletions

View File

@@ -1,13 +1,10 @@
from .utils import InsertPostInitMethodToModuleSubClasses
import torch
from colossalai.tensor import ColoTensor, ColoParameter, distspec, ProcessGroup, ReplicaSpec
from colossalai.tensor import ColoTensor, ColoParameter
from colossalai.nn.parallel.layers import register_colo_module, \
ColoLinear, ColoEmbedding
from copy import copy
from torch import nn
from typing import Iterator, Tuple, Union
from functools import partialmethod
# find named_params includes replica
@@ -34,47 +31,6 @@ def ColoModulize(module):
module._colo_visited = True
def colo_state_dict(self, destination=None, prefix='', keep_vars=False, state_dict_func=None):
# build param to spec mapping
mapping1 = dict()
mapping2 = dict()
mapping3 = dict()
# gather all params
has_dist_parameter = False
with torch.no_grad():
for param in self.parameters():
if isinstance(param, ColoParameter):
has_dist_parameter = True
mapping1[id(param)] = copy(param.dist_spec)
mapping2[id(param)] = copy(param.compute_spec)
# TODO(jiaruifang) fixme, we should elegently handle the default PG in init context
if param.get_process_group() is None:
param.process_group = ProcessGroup()
param.set_dist_spec(distspec.replicate())
mapping3[id(param)] = param.get_process_group()
param.process_group = None
# TODO: fix when keep_vars = True
# when keep_vars = False, the state_dict_func will call detach to create
# new tensors, but when keep_vars = True, the recovery of spec will be reflected
# in the `ret`, such that the final state dict will still contain process group,
# raising exception as it is not serializable
assert not (keep_vars and has_dist_parameter), 'keep_vars cannot be True when there are distributed ColoParameters.'
ret = state_dict_func(self, destination, prefix, keep_vars)
# recover
with torch.no_grad():
for param in self.parameters():
param_id = id(param)
if param_id in mapping1:
dist_spec = mapping1[id(param)]
compute_spec = mapping2[id(param)]
param.process_group = mapping3[id(param)]
param.set_tensor_spec(dist_spec, compute_spec)
return ret
class ColoInitContext(InsertPostInitMethodToModuleSubClasses):
def __init__(self, lazy_memory_allocate: bool = False, device: torch.device = torch.device('cpu')):
@@ -94,8 +50,7 @@ class ColoInitContext(InsertPostInitMethodToModuleSubClasses):
register_colo_module(torch.nn.Embedding, ColoEmbedding())
def _pre_context_exec(self):
self.state_dict_func = nn.Module.state_dict
nn.Module.state_dict = partialmethod(colo_state_dict, state_dict_func=self.state_dict_func)
pass
def _post_init_method(self, module: torch.nn.Module, *args, **kwargs):
"""