mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-10-02 23:55:40 +00:00
[tutorial] edited hands-on practices (#1899)
* Add handson to ColossalAI. * Change names of handsons and edit sequence parallel example. * Edit wrong folder name * resolve conflict * delete readme
This commit is contained in:
@@ -0,0 +1,62 @@
|
||||
# coding=utf-8
|
||||
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""Blendable dataset."""
|
||||
|
||||
import time
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
|
||||
class BlendableDataset(torch.utils.data.Dataset):
|
||||
|
||||
def __init__(self, datasets, weights):
|
||||
|
||||
self.datasets = datasets
|
||||
num_datasets = len(datasets)
|
||||
assert num_datasets == len(weights)
|
||||
|
||||
self.size = 0
|
||||
for dataset in self.datasets:
|
||||
self.size += len(dataset)
|
||||
|
||||
# Normalize weights.
|
||||
weights = np.array(weights, dtype=np.float64)
|
||||
sum_weights = np.sum(weights)
|
||||
assert sum_weights > 0.0
|
||||
weights /= sum_weights
|
||||
|
||||
# Build indices.
|
||||
start_time = time.time()
|
||||
assert num_datasets < 255
|
||||
self.dataset_index = np.zeros(self.size, dtype=np.uint8)
|
||||
self.dataset_sample_index = np.zeros(self.size, dtype=np.int64)
|
||||
|
||||
from . import helpers
|
||||
helpers.build_blending_indices(self.dataset_index,
|
||||
self.dataset_sample_index,
|
||||
weights, num_datasets, self.size,
|
||||
torch.distributed.get_rank() == 0)
|
||||
print('> elapsed time for building blendable dataset indices: '
|
||||
'{:.2f} (sec)'.format(time.time() - start_time))
|
||||
|
||||
def __len__(self):
|
||||
return self.size
|
||||
|
||||
def __getitem__(self, idx):
|
||||
dataset_idx = self.dataset_index[idx]
|
||||
sample_idx = self.dataset_sample_index[idx]
|
||||
return self.datasets[dataset_idx][sample_idx]
|
Reference in New Issue
Block a user