[tensor] refine linear and add gather for laynorm (#893)

* refine linear and add function to ColoTensor

* add gather for layernorm

* polish

* polish
This commit is contained in:
Ziyue Jiang
2022-04-28 10:55:40 +08:00
committed by GitHub
parent 26c49639d8
commit cb182da7c5
7 changed files with 225 additions and 123 deletions

View File

@@ -1,4 +1,3 @@
from colossalai.context import parallel_mode
from .op_wrapper import _COLOSSAL_OPS
import torch
@@ -6,8 +5,8 @@ from typing import Tuple, Optional, Callable
from numpy import product
from colossalai.core import global_context as gpc
from colossalai.nn.layer.utils import divide
from colossalai.tensor import TensorSpec, ComputePattern, ParallelAction
from colossalai.tensor import TensorSpec, ComputePattern, ShardPattern
from colossalai.nn.layer.parallel_1d._utils import split_forward_gather_backward, gather_forward_split_backward
class ColoTensor(object):
""" Data Structure for Tensor in Colossal-AI
@@ -37,6 +36,7 @@ class ColoTensor(object):
self._device = device
self._torch_tensor = torch_tensor
self._shard_spec = shard_spec
self._shard_pattern = ShardPattern.NA
def __getitem__(self, key):
return ColoTensor.init_from_torch_tensor(self.torch_tensor()[key])
@@ -45,6 +45,10 @@ class ColoTensor(object):
def shard_spec(self) -> TensorSpec:
return self._shard_spec
@property
def shard_pattern(self):
return self._shard_pattern
@property
def data(self):
return self._torch_tensor.data
@@ -112,22 +116,51 @@ class ColoTensor(object):
device=self._device)
return self._torch_tensor
def set_spec(self, spec: TensorSpec, lazy_shard: bool = False) -> None:
def set_spec(self, spec: TensorSpec, shard: bool = True) -> None:
self._shard_spec = spec
if lazy_shard == False:
self._shard()
if shard == True:
self.shard()
def set_shard_pattern(self, shard_pattern: ShardPattern):
self._shard_pattern = shard_pattern
def _shard(self):
def shard(self):
assert self._shard_spec is not None, 'You should call set_spec() before _shard() ColoTensor.'
if self._shard_spec.num_action == 1:
if ComputePattern.TP1DRow in self._shard_spec.compute_patterns:
parallel_action = self._shard_spec.get_action_by_compute_pattern(
ComputePattern.TP1DRow)
self._shard_1d(parallel_action=parallel_action, dim=-1)
elif ComputePattern.TP1DCol in self._shard_spec.compute_patterns:
parallel_action = self._shard_spec.get_action_by_compute_pattern(
ComputePattern.TP1DCol)
self._shard_1d(parallel_action=parallel_action, dim=0)
if self._shard_pattern is not ShardPattern.NA: # reshard
self.gather()
# Model Parameters
if ComputePattern.TP1DRow in self._shard_spec.compute_patterns:
parallel_action = self._shard_spec.get_action_by_compute_pattern(
ComputePattern.TP1DRow)
self._shard_1d(parallel_action=parallel_action, dim=-1)
self._shard_pattern = ShardPattern.Col # We bind our ComputePattern on weight, which has to be transposed when linear().
elif ComputePattern.TP1DCol in self._shard_spec.compute_patterns:
parallel_action = self._shard_spec.get_action_by_compute_pattern(
ComputePattern.TP1DCol)
self._shard_1d(parallel_action=parallel_action, dim=0)
self._shard_pattern = ShardPattern.Row
def gather(self):
assert self.is_activation(), 'Currently we only support gather Activation ColoTensor.'
assert not self.is_gathered(), 'Only sharded ColoTensor can be gathered.'
parallel_action = self._shard_spec.get_action_by_compute_pattern(
ComputePattern.Activation)
if self._shard_pattern == ShardPattern.Row:
dim = 0
elif self._shard_pattern == ShardPattern.Col:
dim = -1
self._torch_tensor = gather_forward_split_backward(self._torch_tensor, parallel_action.parallel_mode, dim=dim)
self._shard_pattern = ShardPattern.NA
def is_gathered(self) -> bool:
return self._shard_pattern == ShardPattern.NA
def has_spec(self) -> bool:
return self._shard_spec is not None and self._shard_spec.num_action > 0
def is_activation(self) -> bool:
return self._shard_spec is not None and self._shard_spec.num_action == 1 \
and ComputePattern.Activation in self._shard_spec.compute_patterns
def _shard_1d(self, parallel_action, dim=-1):
num_partition = gpc.get_world_size(parallel_action.parallel_mode)