From cb3d1bef62b63eac96d976379a4930a0807e8da3 Mon Sep 17 00:00:00 2001 From: YuliangLiu0306 <72588413+YuliangLiu0306@users.noreply.github.com> Date: Wed, 8 Feb 2023 15:02:12 +0800 Subject: [PATCH] [autoparallel] adapt autoparallel tests with latest api (#2626) --- .../strategy/matmul_strategy_generator.py | 14 +- .../tensor_shard/solver/cost_graph.py | 3 - .../test_bias_addition_forward.py | 97 +------ .../test_gpt/test_gpt2_performance.py | 131 --------- .../test_gpt/test_runtime_with_gpt_modules.py | 54 ++-- .../test_tensor_shard/test_metainfo/utils.py | 2 +- .../test_resnet_block_runtime.py | 270 ------------------ .../test_shape_consistency_pass.py | 71 ++--- 8 files changed, 59 insertions(+), 583 deletions(-) delete mode 100644 tests/test_auto_parallel/test_tensor_shard/test_gpt/test_gpt2_performance.py delete mode 100644 tests/test_auto_parallel/test_tensor_shard/test_resnet_block_runtime.py diff --git a/colossalai/auto_parallel/tensor_shard/node_handler/strategy/matmul_strategy_generator.py b/colossalai/auto_parallel/tensor_shard/node_handler/strategy/matmul_strategy_generator.py index 9aa95b43a..fa2246f95 100644 --- a/colossalai/auto_parallel/tensor_shard/node_handler/strategy/matmul_strategy_generator.py +++ b/colossalai/auto_parallel/tensor_shard/node_handler/strategy/matmul_strategy_generator.py @@ -247,12 +247,12 @@ class LinearProjectionStrategyGenerator(MatMulStrategyGenerator): strategies.append(self.split_rhs_space_both_contract(1, 0)) # RR= RS x SR - # strategies.append(self.recompute_split_both_contract(0)) - # strategies.append(self.recompute_split_both_contract(1)) + strategies.append(self.recompute_split_both_contract(0)) + strategies.append(self.recompute_split_both_contract(1)) - # # RS = RR x RS - # strategies.append(self.split_rhs_space_only(0)) - # strategies.append(self.split_rhs_space_only(1)) + # RS = RR x RS + strategies.append(self.split_rhs_space_only(0)) + strategies.append(self.split_rhs_space_only(1)) # S01R = S01R x RR strategies.append(self.split_lhs_1st_dim_1d(0, 1)) @@ -263,8 +263,8 @@ class LinearProjectionStrategyGenerator(MatMulStrategyGenerator): # RS01 = RR x RS01 strategies.append(self.split_rhs_2nd_dim_1d(0, 1)) - # # RR = RR x RR - # strategies.append(self.non_split()) + # RR = RR x RR + strategies.append(self.non_split()) return strategies diff --git a/colossalai/auto_parallel/tensor_shard/solver/cost_graph.py b/colossalai/auto_parallel/tensor_shard/solver/cost_graph.py index 038e56547..74290453c 100644 --- a/colossalai/auto_parallel/tensor_shard/solver/cost_graph.py +++ b/colossalai/auto_parallel/tensor_shard/solver/cost_graph.py @@ -62,9 +62,6 @@ class CostGraph: else: edge_cost[(j, i)] = resharding_cost_item.total self.edge_costs[node_pair] = edge_cost - # add parents and children attribute to node - # parent_nodes = [node for node in strategies_vector.predecessor_nodes] - # children_nodes = [node for node in strategies_vector.successor_nodes] parent_nodes = [] children_nodes = [] diff --git a/tests/test_auto_parallel/test_tensor_shard/test_bias_addition_forward.py b/tests/test_auto_parallel/test_tensor_shard/test_bias_addition_forward.py index e666cb175..f43885a6a 100644 --- a/tests/test_auto_parallel/test_tensor_shard/test_bias_addition_forward.py +++ b/tests/test_auto_parallel/test_tensor_shard/test_bias_addition_forward.py @@ -4,21 +4,11 @@ import pytest import torch import torch.multiprocessing as mp -from colossalai.auto_parallel.passes.runtime_apply_pass import runtime_apply_pass -from colossalai.auto_parallel.passes.runtime_preparation_pass import runtime_preparation_pass -from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationDataType -from colossalai.auto_parallel.tensor_shard.solver import ( - CostGraph, - GraphAnalyser, - Solver, - SolverOptions, - StrategiesConstructor, -) +from colossalai.auto_parallel.tensor_shard.initialize import initialize_model from colossalai.device.device_mesh import DeviceMesh -from colossalai.fx import ColoGraphModule, ColoTracer from colossalai.initialize import launch from colossalai.logging import disable_existing_loggers -from colossalai.testing import assert_close, assert_close_loose, rerun_if_address_is_in_use +from colossalai.testing import assert_close, rerun_if_address_is_in_use from colossalai.testing.pytest_wrapper import run_on_environment_flag from colossalai.utils import free_port @@ -63,42 +53,9 @@ def check_linear_module(rank, world_size, port): # [[0, 1] # [2, 3]] device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True) - tracer = ColoTracer() - # graph(): - # %x : torch.Tensor [#users=1] = placeholder[target=x] - # %linear_weight : [#users=1] = get_attr[target=linear.weight] - # %linear_bias : [#users=1] = get_attr[target=linear.bias] - # %linear : [#users=1] = call_function[target=torch._C._nn.linear](args = (%x, %linear_weight), kwargs = {}) - # %add : [#users=1] = call_function[target=operator.add](args = (%linear, %linear_bias), kwargs = {}) - # %mul : [#users=1] = call_function[target=operator.mul](args = (%add, 2), kwargs = {}) - # return mul - graph = tracer.trace(root=model, meta_args={'x': torch.rand(4, 4).to('meta')}) - # def forward(self, x : torch.Tensor): - # linear_weight = self.linear.weight - # linear_bias = self.linear.bias - # linear = torch._C._nn.linear(x, linear_weight); x = linear_weight = None - # add = linear + linear_bias; linear = linear_bias = None - # mul = add * 2; add = None - # return mul - gm = ColoGraphModule(model, graph) - gm.recompile() - node_list = list(graph.nodes) - - solver_options = SolverOptions() - strategies_constructor = StrategiesConstructor(graph, device_mesh, solver_options) - strategies_constructor.build_strategies_and_cost() - linear_node = node_list[3] - cost_graph = CostGraph(strategies_constructor.leaf_strategies) - cost_graph.simplify_graph() - graph_analyser = GraphAnalyser(gm) - solver = Solver(gm.graph, strategies_constructor, cost_graph, graph_analyser) - ret = solver.call_solver_serialized_args() - solution = list(ret[0]) - gm, sharding_spec_dict, origin_spec_dict, comm_actions_dict = runtime_preparation_pass(gm, solution, device_mesh) - - gm = runtime_apply_pass(gm) - gm.recompile() - output = gm(input, sharding_spec_dict, origin_spec_dict, comm_actions_dict) + meta_args = {'x': torch.rand(4, 4).to('meta')} + gm = initialize_model(model, meta_args=meta_args, device_mesh=device_mesh) + output = gm(input) assert_close(output, output_compare) @@ -113,47 +70,9 @@ def check_conv_module(rank, world_size, port): # [[0, 1] # [2, 3]] device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True) - tracer = ColoTracer() - # graph(): - # %x : torch.Tensor [#users=1] = placeholder[target=x] - # %conv_weight : [#users=1] = get_attr[target=conv.weight] - # %conv_bias : [#users=1] = get_attr[target=conv.bias] - # %conv2d : [#users=1] = call_function[target=torch.conv2d](args = (%x, %conv_weight), kwargs = {}) - # %view : [#users=1] = call_method[target=view](args = (%conv_bias, [1, -1, 1, 1]), kwargs = {}) - # %add : [#users=1] = call_function[target=operator.add](args = (%conv2d, %view), kwargs = {}) - # %mul : [#users=1] = call_function[target=operator.mul](args = (%add, 2), kwargs = {}) - # return mul - graph = tracer.trace(root=model, meta_args={'x': torch.rand(4, 3, 64, 64).to('meta')}) - # def forward(self, x : torch.Tensor): - # conv_weight = self.conv.weight - # conv_bias = self.conv.bias - # conv2d = torch.conv2d(x, conv_weight); x = conv_weight = None - # view = conv_bias.view([1, -1, 1, 1]); conv_bias = None - # add = conv2d + view; conv2d = view = None - # mul = add * 2; add = None - # return mul - gm = ColoGraphModule(model, graph) - - gm.recompile() - - node_list = list(graph.nodes) - conv_node = node_list[3] - solver_options = SolverOptions() - strategies_constructor = StrategiesConstructor(graph, device_mesh, solver_options) - strategies_constructor.build_strategies_and_cost() - - cost_graph = CostGraph(strategies_constructor.leaf_strategies) - cost_graph.simplify_graph() - graph_analyser = GraphAnalyser(gm) - solver = Solver(gm.graph, strategies_constructor, cost_graph, graph_analyser) - ret = solver.call_solver_serialized_args() - solution = list(ret[0]) - - gm, sharding_spec_dict, origin_spec_dict, comm_actions_dict = runtime_preparation_pass(gm, solution, device_mesh) - - gm = runtime_apply_pass(gm) - gm.recompile() - output = gm(input, sharding_spec_dict, origin_spec_dict, comm_actions_dict) + meta_args = {'x': torch.rand(4, 3, 64, 64).to('meta')} + gm = initialize_model(model, meta_args=meta_args, device_mesh=device_mesh) + output = gm(input) assert_close(output, output_compare) diff --git a/tests/test_auto_parallel/test_tensor_shard/test_gpt/test_gpt2_performance.py b/tests/test_auto_parallel/test_tensor_shard/test_gpt/test_gpt2_performance.py deleted file mode 100644 index 0979d8353..000000000 --- a/tests/test_auto_parallel/test_tensor_shard/test_gpt/test_gpt2_performance.py +++ /dev/null @@ -1,131 +0,0 @@ -import copy -import random -from functools import partial -from time import time -from typing import Dict, Optional, Tuple, Union - -import numpy as np -import psutil -import pytest -import torch -import torch.multiprocessing as mp -import torch.nn as nn -import transformers -from torch.fx import GraphModule -from torch.profiler import ProfilerActivity, profile, record_function, schedule, tensorboard_trace_handler - -from colossalai.auto_parallel.passes.runtime_apply_pass import runtime_apply_pass -from colossalai.auto_parallel.passes.runtime_preparation_pass import runtime_preparation_pass -from colossalai.auto_parallel.tensor_shard.constants import BATCHNORM_MODULE_OP -from colossalai.auto_parallel.tensor_shard.initialize import autoparallelize, initialize_model -from colossalai.auto_parallel.tensor_shard.sharding_strategy import ShardingSpec -from colossalai.auto_parallel.tensor_shard.solver import ( - CostGraph, - GraphAnalyser, - Solver, - SolverOptions, - StrategiesConstructor, -) -from colossalai.device.device_mesh import DeviceMesh -from colossalai.fx.tracer.tracer import ColoTracer -from colossalai.initialize import launch, launch_from_torch -from colossalai.logging import disable_existing_loggers, get_dist_logger -from colossalai.tensor.shape_consistency import ShapeConsistencyManager, to_global -from colossalai.testing import assert_close, assert_close_loose, parameterize, rerun_if_address_is_in_use -from colossalai.testing.pytest_wrapper import run_on_environment_flag -from colossalai.utils import free_port -from tests.test_auto_parallel.test_tensor_shard.test_gpt.gpt_modules import GPT2LMHeadModel, GPTLMLoss - -BATCH_SIZE = 32 -SEQ_LENGTH = 256 -HIDDEN_DIM = 16384 -NUM_HEADS = 128 -NUM_LAYERS = 4 -VOCAB_SIZE = 50257 -NUM_STEPS = 10 -FP16 = True - - -def get_cpu_mem(): - return psutil.Process().memory_info().rss / 1024**2 - - -def get_gpu_mem(): - return torch.cuda.memory_allocated() / 1024**2 - - -def get_mem_info(prefix=''): - return f'{prefix}GPU memory usage: {get_gpu_mem():.2f} MB, CPU memory usage: {get_cpu_mem():.2f} MB' - - -def get_tflops(model_numel, batch_size, seq_len, step_time): - # Tflops_per_GPU = global_batch * global_numel * seq_len * 8 / #gpu - return model_numel * batch_size * seq_len * 8 / 1e12 / (step_time + 1e-12) / 4 - - -# Randomly Generated Data -def get_data(batch_size, seq_len, vocab_size): - input_ids = torch.randint(0, vocab_size, (batch_size, seq_len), device=torch.cuda.current_device()) - attention_mask = torch.ones_like(input_ids) - return input_ids, attention_mask - - -def main(): - disable_existing_loggers() - launch_from_torch(config={}) - logger = get_dist_logger() - config = transformers.GPT2Config(n_position=SEQ_LENGTH, n_layer=NUM_LAYERS, n_head=NUM_HEADS, n_embd=HIDDEN_DIM) - if FP16: - model = GPT2LMHeadModel(config=config).half().to('cuda') - else: - model = GPT2LMHeadModel(config=config).to('cuda') - global_numel = sum([p.numel() for p in model.parameters()]) - - meta_input_sample = { - 'input_ids': torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64).to('meta'), - 'attention_mask': torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64).to('meta'), - } - - physical_mesh_id = torch.arange(0, 4) - mesh_shape = (2, 2) - # [[0, 1] - # [2, 3]] - device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True) - - gm = initialize_model(model, meta_input_sample, device_mesh) - - # build criterion - criterion = GPTLMLoss() - - optimizer = torch.optim.Adam(gm.parameters(), lr=0.01) - logger.info(get_mem_info(prefix='After init model, '), ranks=[0]) - get_tflops_func = partial(get_tflops, global_numel, BATCH_SIZE, SEQ_LENGTH) - torch.cuda.synchronize() - model.train() - # with profile(activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA], - # schedule=schedule(wait=1, warmup=2, active=2), - # on_trace_ready=tensorboard_trace_handler(f'log/dummy_data/bs128_seq128_new'), - # record_shapes=True, - # profile_memory=True) as prof: - # with torch.profiler.profile(activities=[torch.profiler.ProfilerActivity.CPU, torch.profiler.ProfilerActivity.CUDA]) as prof: - for n in range(10): - # we just use randomly generated data here - input_ids, attn_mask = get_data(BATCH_SIZE, SEQ_LENGTH, VOCAB_SIZE) - optimizer.zero_grad() - start = time() - outputs = gm(input_ids, attn_mask) - loss = criterion(outputs, input_ids) - loss.backward() - optimizer.step() - # prof.step() - torch.cuda.synchronize() - step_time = time() - start - logger.info( - f'[{n+1}/{NUM_STEPS}] Loss:{loss.item():.3f}, Step time: {step_time:.3f}s, TFLOPS: {get_tflops_func(step_time):.3f}', - ranks=[0]) - # print(prof.key_averages().table(sort_by="self_cuda_time_total", row_limit=10)) - torch.cuda.synchronize() - - -if __name__ == '__main__': - main() diff --git a/tests/test_auto_parallel/test_tensor_shard/test_gpt/test_runtime_with_gpt_modules.py b/tests/test_auto_parallel/test_tensor_shard/test_gpt/test_runtime_with_gpt_modules.py index c7f9988f1..753ecff53 100644 --- a/tests/test_auto_parallel/test_tensor_shard/test_gpt/test_runtime_with_gpt_modules.py +++ b/tests/test_auto_parallel/test_tensor_shard/test_gpt/test_runtime_with_gpt_modules.py @@ -1,32 +1,27 @@ import copy import random from functools import partial -from typing import Dict, Optional, Tuple, Union +from typing import Dict import numpy as np import pytest import torch import torch.multiprocessing as mp -import torch.nn as nn import transformers from torch.fx import GraphModule -from colossalai.auto_parallel.passes.runtime_apply_pass import runtime_apply_pass -from colossalai.auto_parallel.passes.runtime_preparation_pass import runtime_preparation_pass -from colossalai.auto_parallel.tensor_shard.constants import BATCHNORM_MODULE_OP -from colossalai.auto_parallel.tensor_shard.sharding_strategy import ShardingSpec -from colossalai.auto_parallel.tensor_shard.solver import ( - CostGraph, - GraphAnalyser, - Solver, - SolverOptions, - StrategiesConstructor, +from colossalai.auto_parallel.tensor_shard.initialize import ( + ModuleWrapper, + build_strategy_constructor, + solve_solution, + transform_to_sharded_model, ) +from colossalai.auto_parallel.tensor_shard.sharding_strategy import ShardingSpec from colossalai.device.device_mesh import DeviceMesh from colossalai.fx.tracer.tracer import ColoTracer from colossalai.initialize import launch from colossalai.logging import disable_existing_loggers -from colossalai.tensor.shape_consistency import ShapeConsistencyManager, to_global +from colossalai.tensor.shape_consistency import to_global from colossalai.testing import assert_close, assert_close_loose, parameterize, rerun_if_address_is_in_use from colossalai.testing.pytest_wrapper import run_on_environment_flag from colossalai.utils import free_port @@ -49,6 +44,7 @@ def _check_module_grad(module: torch.nn.Module, origin_param_dict: Dict[str, tor best_sharding_spec_dict: Dict[str, ShardingSpec]): for name, param in module.named_parameters(): param_grad = param.grad + name = name.replace('module.', '') origin_param_grad = origin_param_dict[name].grad atoms = name.split('.') new_name = '_'.join(atoms) @@ -115,30 +111,17 @@ def check_attention_layer(rank, model_cls, world_size, port): # [[0, 1] # [2, 3]] device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True) - shape_consistency_manager = ShapeConsistencyManager() - tracer = ColoTracer() graph = tracer.trace(root=model, meta_args=meta_input_sample) gm = GraphModule(model, graph, model.__class__.__name__) gm.recompile() - graph_analyser = GraphAnalyser(gm) - liveness_list = graph_analyser.liveness_analysis() - solver_options = SolverOptions() - strategies_constructor = StrategiesConstructor(graph, device_mesh, solver_options) - strategies_constructor.build_strategies_and_cost() + strategies_constructor = build_strategy_constructor(graph, device_mesh) + solution = solve_solution(gm, strategies_constructor, memory_budget=-1) + gm, sharding_spec_dicts = transform_to_sharded_model(gm, solution, device_mesh, strategies_constructor) + gm = ModuleWrapper(gm, *sharding_spec_dicts) - cost_graph = CostGraph(strategies_constructor.leaf_strategies) - cost_graph.simplify_graph() - solver = Solver(gm.graph, strategies_constructor, cost_graph, graph_analyser, memory_budget=-1) - ret = solver.call_solver_serialized_args() - - solution = list(ret[0]) - gm, sharding_spec_dict, origin_spec_dict, comm_actions_dict = runtime_preparation_pass( - gm, solution, device_mesh, strategies_constructor) - gm = runtime_apply_pass(gm) - gm.recompile() nodes = [strategies_vector.node for strategies_vector in strategies_constructor.leaf_strategies] best_sharding_spec_dict = {} for index, node in enumerate(nodes): @@ -149,7 +132,7 @@ def check_attention_layer(rank, model_cls, world_size, port): origin_output = test_model(*test_input_sample) torch.cuda.set_rng_state(cuda_rng_state) torch.set_rng_state(cpu_rng_state) - output = gm(*input_sample, sharding_spec_dict, origin_spec_dict, comm_actions_dict) + output = gm(*input_sample) assert_close(output, origin_output, rtol=1e-03, atol=1e-03) #*******************backward starting******************* @@ -174,16 +157,15 @@ def check_attention_layer(rank, model_cls, world_size, port): #*******************strategy selected******************* if rank == 0: print("*******************strategy selected*******************") - strategies_list = solver.last_s_val nodes = [strategies_vector.node for strategies_vector in strategies_constructor.leaf_strategies] computation_cost = 0 communication_cost = 0 memory_cost = 0 for index, node in enumerate(nodes): - print(node.name, node.strategies_vector[strategies_list[index]].name) - computation_cost += node.strategies_vector[strategies_list[index]].compute_cost.total - communication_cost += node.strategies_vector[strategies_list[index]].communication_cost.total - node_memory_cost = node.strategies_vector[strategies_list[index]].memory_cost.total + print(node.name, node.strategies_vector[solution[index]].name) + computation_cost += node.strategies_vector[solution[index]].compute_cost.total + communication_cost += node.strategies_vector[solution[index]].communication_cost.total + node_memory_cost = node.strategies_vector[solution[index]].memory_cost.total if isinstance(node_memory_cost, tuple): node_memory_cost = node_memory_cost[0] memory_cost += node_memory_cost.activation + node_memory_cost.parameter diff --git a/tests/test_auto_parallel/test_tensor_shard/test_metainfo/utils.py b/tests/test_auto_parallel/test_tensor_shard/test_metainfo/utils.py index 7c06f2ee9..17eb75fad 100644 --- a/tests/test_auto_parallel/test_tensor_shard/test_metainfo/utils.py +++ b/tests/test_auto_parallel/test_tensor_shard/test_metainfo/utils.py @@ -57,7 +57,7 @@ def mem_test_for_node_strategy(rank: int, output_key] gm, sharding_spec_dict, origin_spec_dict, comm_actions_dict = runtime_preparation_pass( - gm, solution, device_mesh) + gm, solution, device_mesh, strategies_constructor) gm = runtime_apply_pass(gm) gm.recompile() gm: GraphModule diff --git a/tests/test_auto_parallel/test_tensor_shard/test_resnet_block_runtime.py b/tests/test_auto_parallel/test_tensor_shard/test_resnet_block_runtime.py deleted file mode 100644 index 814edd279..000000000 --- a/tests/test_auto_parallel/test_tensor_shard/test_resnet_block_runtime.py +++ /dev/null @@ -1,270 +0,0 @@ -import copy -from copy import deepcopy -from functools import partial - -import pytest -import torch -import torch.multiprocessing as mp -import torch.nn as nn -from torch.fx import GraphModule -from torchvision.models import resnet34, resnet50 - -from colossalai import device -from colossalai.auto_parallel.passes.runtime_apply_pass import runtime_apply_pass -from colossalai.auto_parallel.passes.runtime_preparation_pass import runtime_preparation_pass -from colossalai.auto_parallel.tensor_shard.constants import * -from colossalai.auto_parallel.tensor_shard.solver.cost_graph import CostGraph -from colossalai.auto_parallel.tensor_shard.solver.graph_analysis import GraphAnalyser -from colossalai.auto_parallel.tensor_shard.solver.options import SolverOptions -from colossalai.auto_parallel.tensor_shard.solver.solver import Solver -from colossalai.auto_parallel.tensor_shard.solver.strategies_constructor import StrategiesConstructor -from colossalai.device.device_mesh import DeviceMesh -from colossalai.fx.tracer.tracer import ColoTracer -from colossalai.initialize import launch -from colossalai.logging import disable_existing_loggers -from colossalai.testing import assert_close, assert_close_loose, rerun_if_address_is_in_use -from colossalai.testing.pytest_wrapper import run_on_environment_flag -from colossalai.utils import free_port - -seed = 128 -cudnn_benchmark = False -cudnn_deterministic = True - - -def conv3x3(in_planes: int, out_planes: int, stride: int = 1, groups: int = 1, dilation: int = 1) -> nn.Conv2d: - """3x3 convolution with padding""" - return nn.Conv2d( - in_planes, - out_planes, - kernel_size=3, - stride=stride, - padding=dilation, - groups=groups, - bias=False, - dilation=dilation, - ) - - -def conv1x1(in_planes: int, out_planes: int, stride: int = 1) -> nn.Conv2d: - """1x1 convolution""" - return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) - - -class Bottleneck(nn.Module): - # Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2) - # while original implementation places the stride at the first 1x1 convolution(self.conv1) - # according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385. - # This variant is also known as ResNet V1.5 and improves accuracy according to - # https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch. - - expansion: int = 4 - - def __init__( - self, - inplanes: int, - planes: int, - stride: int = 1, - downsample=None, - groups: int = 1, - base_width: int = 64, - dilation: int = 1, - norm_layer=None, - ) -> None: - super().__init__() - if norm_layer is None: - norm_layer = nn.BatchNorm2d - width = int(planes * (base_width / 64.0)) * groups - # Both self.conv2 and self.downsample layers downsample the input when stride != 1 - self.conv1 = conv1x1(inplanes, width) - self.bn1 = norm_layer(width) - self.conv2 = conv3x3(width, width, stride, groups, dilation) - self.bn2 = norm_layer(width) - self.conv3 = conv1x1(width, planes * self.expansion) - self.bn3 = norm_layer(planes * self.expansion) - self.relu = nn.ReLU(inplace=True) - self.downsample = downsample - self.stride = stride - - def forward(self, x): - identity = x - - out = self.conv1(x) - out = self.bn1(out) - out = self.relu(out) - - out = self.conv2(out) - out = self.bn2(out) - out = self.relu(out) - - out = self.conv3(out) - out = self.bn3(out) - - if self.downsample is not None: - identity = self.downsample(x) - - out = self.relu(out) - - return out - - -def check_apply_bottleneck(rank, world_size, port): - disable_existing_loggers() - launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') - input = torch.rand(4, 4, 4, 4).cuda() - physical_mesh_id = torch.arange(0, 4) - mesh_shape = (2, 2) - # [[0, 1] - # [2, 3]] - device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True) - - tracer = ColoTracer() - model = Bottleneck(4, 4, 1, norm_layer=torch.nn.modules.batchnorm.BatchNorm2d).cuda() - test_model = copy.deepcopy(model) - test_input = copy.deepcopy(input) - # graph(): - # %x : torch.Tensor [#users=1] = placeholder[target=x] - # %conv1 : [#users=1] = call_module[target=conv1](args = (%x,), kwargs = {}) - # %bn1 : [#users=1] = call_module[target=bn1](args = (%conv1,), kwargs = {}) - # %relu : [#users=1] = call_module[target=relu](args = (%bn1,), kwargs = {}) - # %conv2 : [#users=1] = call_module[target=conv2](args = (%relu,), kwargs = {}) - # %bn2 : [#users=1] = call_module[target=bn2](args = (%conv2,), kwargs = {}) - # %relu_1 : [#users=1] = call_module[target=relu](args = (%bn2,), kwargs = {}) - # %conv3 : [#users=1] = call_module[target=conv3](args = (%relu_1,), kwargs = {}) - # %bn3 : [#users=1] = call_module[target=bn3](args = (%conv3,), kwargs = {}) - # %relu_2 : [#users=1] = call_module[target=relu](args = (%bn3,), kwargs = {}) - # return relu_2 - input_sample = {'x': torch.rand(4, 4, 4, 4).to('meta')} - - graph = tracer.trace(root=model, meta_args=input_sample) - gm = GraphModule(model, graph, model.__class__.__name__) - gm.recompile() - solver_options = SolverOptions() - strategies_constructor = StrategiesConstructor(graph, device_mesh, solver_options) - strategies_constructor.build_strategies_and_cost() - - cost_graph = CostGraph(strategies_constructor.leaf_strategies) - cost_graph.simplify_graph() - graph_analyser = GraphAnalyser(gm) - solver = Solver(gm.graph, strategies_constructor, cost_graph, graph_analyser) - ret = solver.call_solver_serialized_args() - solution = list(ret[0]) - print(solution) - for index, node in enumerate(graph.nodes): - print(node.name, node.strategies_vector[solution[index]].name) - gm, sharding_spec_dict, origin_spec_dict, comm_actions_dict = runtime_preparation_pass(gm, solution, device_mesh) - gm = runtime_apply_pass(gm) - gm.recompile() - nodes = [node for node in gm.graph.nodes] - # TODO: wrap the gm to avoid the influence of the user training code - cuda_rng_state = torch.cuda.get_rng_state() - origin_output = test_model(test_input) - torch.cuda.set_rng_state(cuda_rng_state) - output = gm(input, sharding_spec_dict, origin_spec_dict, comm_actions_dict) - - assert output.shape == origin_output.shape - assert_close(output, origin_output, rtol=1e-03, atol=1e-05) - print("*******************backward starting*******************") - cuda_rng_state = torch.cuda.get_rng_state() - output.sum().backward() - torch.cuda.set_rng_state(cuda_rng_state) - origin_output.sum().backward() - if rank == 0: - print( - f"bn3 diff sum in rank {rank}: {(gm.bn3.weight.grad - test_model.bn3.weight.grad.narrow(0, 0, 4)).abs().sum()}" - ) - print( - f"conv3 diff sum in rank {rank}: {(gm.conv3.weight.grad - test_model.conv3.weight.grad.narrow(0, 0, 8)).abs().sum()}" - ) - print( - f"bn2 diff sum in rank {rank}: {(gm.bn2.weight.grad - test_model.bn2.weight.grad.narrow(0, 0, 2)).abs().sum()}" - ) - print( - f"conv2 diff sum in rank {rank}: {(gm.conv2.weight.grad - test_model.conv2.weight.grad.narrow(0, 0, 2)).abs().sum()}" - ) - print( - f"bn1 diff sum in rank {rank}: {(gm.bn1.weight.grad - test_model.bn1.weight.grad.narrow(0, 0, 1)).abs().sum()}" - ) - print(f"conv1 diff sum in rank {rank}: {(gm.conv1.weight.grad - test_model.conv1.weight.grad).sum()}") - - assert_close_loose(gm.conv3.weight.grad.sum(), test_model.conv3.weight.grad.narrow(0, 0, 8).sum()) - assert_close_loose(gm.conv2.weight.grad.sum(), test_model.conv2.weight.grad.narrow(0, 0, 2).sum()) - assert_close_loose(gm.conv1.weight.grad.sum(), test_model.conv1.weight.grad.sum()) - - if rank == 1: - print( - f"bn3 diff sum in rank {rank}: {(gm.bn3.weight.grad - test_model.bn3.weight.grad.narrow(0, 4, 4)).abs().sum()}" - ) - print( - f"conv3 diff sum in rank {rank}: {(gm.conv3.weight.grad - test_model.conv3.weight.grad.narrow(0, 0, 8)).abs().sum()}" - ) - print( - f"bn2 diff sum in rank {rank}: {(gm.bn2.weight.grad - test_model.bn2.weight.grad.narrow(0, 2, 2)).abs().sum()}" - ) - print( - f"conv2 diff sum in rank {rank}: {(gm.conv2.weight.grad - test_model.conv2.weight.grad.narrow(0, 2, 2)).abs().sum()}" - ) - print( - f"bn1 diff sum in rank {rank}: {(gm.bn1.weight.grad - test_model.bn1.weight.grad.narrow(0, 1, 1)).abs().sum()}" - ) - print(f"conv1 diff sum in rank {rank}: {(gm.conv1.weight.grad - test_model.conv1.weight.grad).sum()}") - - assert_close_loose(gm.conv3.weight.grad.sum(), test_model.conv3.weight.grad.narrow(0, 0, 8).sum()) - assert_close_loose(gm.conv2.weight.grad.sum(), test_model.conv2.weight.grad.narrow(0, 2, 2).sum()) - assert_close_loose(gm.conv1.weight.grad.sum(), test_model.conv1.weight.grad.sum()) - - if rank == 2: - print( - f"bn3 diff sum in rank {rank}: {(gm.bn3.weight.grad - test_model.bn3.weight.grad.narrow(0, 8, 4)).abs().sum()}" - ) - print( - f"conv3 diff sum in rank {rank}: {(gm.conv3.weight.grad - test_model.conv3.weight.grad.narrow(0, 8, 8)).abs().sum()}" - ) - print( - f"bn2 diff sum in rank {rank}: {(gm.bn2.weight.grad - test_model.bn2.weight.grad.narrow(0, 0, 2)).abs().sum()}" - ) - print( - f"conv2 diff sum in rank {rank}: {(gm.conv2.weight.grad - test_model.conv2.weight.grad.narrow(0, 0, 2)).abs().sum()}" - ) - print( - f"bn1 diff sum in rank {rank}: {(gm.bn1.weight.grad - test_model.bn1.weight.grad.narrow(0, 2, 1)).abs().sum()}" - ) - print(f"conv1 diff sum in rank {rank}: {(gm.conv1.weight.grad - test_model.conv1.weight.grad).sum()}") - - assert_close_loose(gm.conv3.weight.grad.sum(), test_model.conv3.weight.grad.narrow(0, 8, 8).sum()) - assert_close_loose(gm.conv2.weight.grad.sum(), test_model.conv2.weight.grad.narrow(0, 0, 2).sum()) - assert_close_loose(gm.conv1.weight.grad.sum(), test_model.conv1.weight.grad.sum()) - - if rank == 3: - print( - f"bn3 diff sum in rank {rank}: {(gm.bn3.weight.grad - test_model.bn3.weight.grad.narrow(0, 12, 4)).abs().sum()}" - ) - print( - f"conv3 diff sum in rank {rank}: {(gm.conv3.weight.grad - test_model.conv3.weight.grad.narrow(0, 8, 8)).abs().sum()}" - ) - print( - f"bn2 diff sum in rank {rank}: {(gm.bn2.weight.grad - test_model.bn2.weight.grad.narrow(0, 2, 2)).abs().sum()}" - ) - print( - f"conv2 diff sum in rank {rank}: {(gm.conv2.weight.grad - test_model.conv2.weight.grad.narrow(0, 2, 2)).abs().sum()}" - ) - print( - f"bn1 diff sum in rank {rank}: {(gm.bn1.weight.grad - test_model.bn1.weight.grad.narrow(0, 3, 1)).abs().sum()}" - ) - print(f"conv1 diff sum in rank {rank}: {(gm.conv1.weight.grad - test_model.conv1.weight.grad).sum()}") - - assert_close_loose(gm.conv3.weight.grad.sum(), test_model.conv3.weight.grad.narrow(0, 8, 8).sum()) - assert_close_loose(gm.conv2.weight.grad.sum(), test_model.conv2.weight.grad.narrow(0, 2, 2).sum()) - assert_close_loose(gm.conv1.weight.grad.sum(), test_model.conv1.weight.grad.sum()) - - -@run_on_environment_flag(name='AUTO_PARALLEL') -@pytest.mark.dist -@rerun_if_address_is_in_use() -def test_apply(): - world_size = 4 - run_func = partial(check_apply_bottleneck, world_size=world_size, port=free_port()) - mp.spawn(run_func, nprocs=world_size) - - -if __name__ == '__main__': - test_apply() diff --git a/tests/test_auto_parallel/test_tensor_shard/test_shape_consistency_pass.py b/tests/test_auto_parallel/test_tensor_shard/test_shape_consistency_pass.py index 66cd3f3f7..24a3ae5b4 100644 --- a/tests/test_auto_parallel/test_tensor_shard/test_shape_consistency_pass.py +++ b/tests/test_auto_parallel/test_tensor_shard/test_shape_consistency_pass.py @@ -5,19 +5,9 @@ import pytest import torch import torch.multiprocessing as mp import torch.nn as nn -from torch.fx import GraphModule -from colossalai.auto_parallel.passes.runtime_apply_pass import runtime_apply_pass -from colossalai.auto_parallel.passes.runtime_preparation_pass import runtime_preparation_pass -from colossalai.auto_parallel.tensor_shard.solver import ( - CostGraph, - GraphAnalyser, - Solver, - SolverOptions, - StrategiesConstructor, -) +from colossalai.auto_parallel.tensor_shard.initialize import initialize_model from colossalai.device.device_mesh import DeviceMesh -from colossalai.fx.tracer.tracer import ColoTracer from colossalai.initialize import launch from colossalai.logging import disable_existing_loggers from colossalai.testing import assert_close, rerun_if_address_is_in_use @@ -41,41 +31,22 @@ def check_apply(rank, world_size, port): disable_existing_loggers() launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') input = torch.rand(4, 4, 4, 4).cuda() + test_input = copy.deepcopy(input) + # graph(): + # %x : torch.Tensor [#users=1] = placeholder[target=x] + # %conv : [#users=1] = call_module[target=conv](args = (%mul,), kwargs = {}) + # return conv + model = ConvModel(4, 4).cuda() + test_model = copy.deepcopy(model) physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) # [[0, 1] # [2, 3]] device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True) + meta_args = {'x': torch.rand(4, 4, 4, 4).to('meta')} + gm = initialize_model(model, meta_args, device_mesh) - tracer = ColoTracer() - model = ConvModel(4, 4).cuda() - test_model = copy.deepcopy(model) - test_input = copy.deepcopy(input) - - input_sample = {'x': torch.rand(4, 4, 4, 4).to('meta')} - # graph(): - # %x : torch.Tensor [#users=1] = placeholder[target=x] - # %conv : [#users=1] = call_module[target=conv](args = (%mul,), kwargs = {}) - # return conv - graph = tracer.trace(root=model, meta_args=input_sample) - gm = GraphModule(model, graph, model.__class__.__name__) - gm.recompile() - solver_options = SolverOptions() - strategies_constructor = StrategiesConstructor(graph, device_mesh, solver_options) - strategies_constructor.build_strategies_and_cost() - - cost_graph = CostGraph(strategies_constructor.leaf_strategies) - cost_graph.simplify_graph() - graph_analyser = GraphAnalyser(gm) - solver = Solver(gm.graph, strategies_constructor, cost_graph, graph_analyser) - ret = solver.call_solver_serialized_args() - solution = list(ret[0]) - gm, sharding_spec_dict, origin_spec_dict, comm_actions_dict = runtime_preparation_pass(gm, solution, device_mesh) - gm = runtime_apply_pass(gm) - gm.recompile() - nodes = [node for node in gm.graph.nodes] - # TODO: wrap the gm to avoid the influence of the user training code - output = gm(input, sharding_spec_dict, origin_spec_dict, comm_actions_dict) + output = gm(input) origin_output = test_model(test_input) assert output.equal(origin_output) origin_loss = origin_output.sum() @@ -84,13 +55,21 @@ def check_apply(rank, world_size, port): origin_loss.backward() loss.backward() - grad_0 = test_model.conv.weight.grad.narrow(0, 0, 2) - grad_1 = test_model.conv.weight.grad.narrow(0, 2, 2) + grad_0 = test_model.conv.weight.grad.narrow(0, 0, 1) + grad_1 = test_model.conv.weight.grad.narrow(0, 1, 1) + grad_2 = test_model.conv.weight.grad.narrow(0, 2, 1) + grad_3 = test_model.conv.weight.grad.narrow(0, 3, 1) - if rank in (0, 1): - assert_close(gm.conv.weight.grad.data, grad_0.data) - elif rank in (2, 3): - assert_close(gm.conv.weight.grad.data, grad_1.data) + if rank == 0: + assert_close(gm.module.conv.weight.grad.data, grad_0.data) + elif rank == 1: + assert_close(gm.module.conv.weight.grad.data, grad_1.data) + elif rank == 2: + assert_close(gm.module.conv.weight.grad.data, grad_2.data) + elif rank == 3: + assert_close(gm.module.conv.weight.grad.data, grad_3.data) + else: + raise ValueError(f'rank {rank} does not exist.') # skip this test due to pulp not installed in CI environment