[autoparallel] gpt2lp runtimee test (#2113)

This commit is contained in:
YuliangLiu0306
2022-12-12 18:06:40 +08:00
committed by GitHub
parent 9214d1fe28
commit cd0af9f7f6
3 changed files with 261 additions and 25 deletions

View File

@@ -11,6 +11,7 @@ from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
OperationDataType,
ShardingStrategy,
)
from colossalai.auto_parallel.tensor_shard.solver.strategies_constructor import StrategiesConstructor
from colossalai.device.device_mesh import DeviceMesh
from colossalai.tensor.comm_spec import _all_reduce
from colossalai.tensor.shape_consistency import ShapeConsistencyManager
@@ -19,13 +20,23 @@ from colossalai.tensor.sharding_spec import ShardingSpec
shape_consistency_manager = ShapeConsistencyManager()
def _solution_annotatation(gm: torch.fx.GraphModule, solution: List[int]):
def _solution_annotatation(gm: torch.fx.GraphModule,
solution: List[int],
strategies_constructor: StrategiesConstructor = None):
"""
This method is used to stick the solution strategy to the nodes and add the information
required in runtime into graph as placeholder nodes.
"""
mod_graph = gm.graph
nodes = tuple(mod_graph.nodes)
# TODO: In future PR, strategies_constructor should be a required argument,
# instead of optional argument. This is because we don't need to consider nodes with
# no strategy in runtime preparation pass.
if strategies_constructor is not None:
nodes = [strategies_vector.node for strategies_vector in strategies_constructor.leaf_strategies]
no_strategy_nodes = strategies_constructor.no_strategy_nodes
else:
nodes = tuple(mod_graph.nodes)
no_strategy_nodes = []
# the dict to get origin sharding spec of node
origin_node_sharding_spec_dict = {}
@@ -44,7 +55,10 @@ def _solution_annotatation(gm: torch.fx.GraphModule, solution: List[int]):
for index, node in enumerate(nodes):
target_sharding_specs = []
for user_node in node.strategies_vector.successor_nodes:
target_sharding_spec = user_node.best_strategy.get_sharding_spec_by_name(str(node.name))
if user_node in no_strategy_nodes:
target_sharding_spec = node.best_strategy.get_sharding_spec_by_name(str(node.name))
else:
target_sharding_spec = user_node.best_strategy.get_sharding_spec_by_name(str(node.name))
target_sharding_specs.append(target_sharding_spec)
sharding_spec_convert_dict[index] = target_sharding_specs
setattr(node, 'target_sharding_specs', target_sharding_specs)
@@ -136,13 +150,17 @@ def _node_args_converting(gm: torch.fx.GraphModule, device_mesh: DeviceMesh):
new_args.append(arg)
for dim, shard_dims in output_dim_partition_dict.items():
# we will skip the dim with -1 value
if new_args[dim + 1] == -1:
continue
total_shard_size = 1
for shard_dim in shard_dims:
total_shard_size *= device_mesh.shape[shard_dim]
new_args[dim + 1] //= total_shard_size
# There are two ways to use torch.view:
# 1. torch.view(input, *shape)
# 2. torch.view(input, shape)
if isinstance(new_args[1], int):
new_args[dim + 1] //= total_shard_size
else:
new_args[1] = list(new_args[1])
new_args[1][dim] //= total_shard_size
node.args = tuple(new_args)
elif node.op == 'call_function':
@@ -193,12 +211,12 @@ def _module_params_sharding(gm: torch.fx.GraphModule, device_mesh: DeviceMesh):
origin_sharding_spec = ShardingSpec(device_mesh, param.shape, {})
setattr(param, 'sharding_spec', origin_sharding_spec)
# TODO: build a ColoParamter class to manager the distributed parameters
param_sharded = torch.nn.Parameter(
shape_consistency_manager.apply_for_autoparallel_runtime(param.data, param.sharding_spec,
target_sharding_spec).detach().clone())
else:
param_sharded = param
setattr(target_module, name, param_sharded)
# we could use .data here, because all the operations just happen before the real training
# loop, so we don't need to track these operations in the autograd graph.
param.data = shape_consistency_manager.apply_for_autoparallel_runtime(
param.data, param.sharding_spec, target_sharding_spec).detach().clone()
setattr(target_module, name, param)
comm_actions = node.best_strategy.communication_actions
for operation_data, comm_action in comm_actions.items():
comm_spec_to_use = comm_action.comm_spec
@@ -212,7 +230,7 @@ def _module_params_sharding(gm: torch.fx.GraphModule, device_mesh: DeviceMesh):
param.register_hook(hook_fn)
wrapper(param_sharded, comm_spec_to_use)
wrapper(param, comm_spec_to_use)
sharded_buffer_dict = {}
# apply the sharding spec of buffers
@@ -242,12 +260,13 @@ def _module_params_sharding(gm: torch.fx.GraphModule, device_mesh: DeviceMesh):
origin_sharding_spec = ShardingSpec(device_mesh, target.shape, {})
setattr(target, 'sharding_spec', origin_sharding_spec)
# TODO: build a ColoParamter class to manager the distributed parameters
target_sharded = torch.nn.Parameter(
shape_consistency_manager.apply_for_autoparallel_runtime(target.data, target.sharding_spec,
target_sharding_spec).detach().clone())
else:
target_sharded = target
setattr(target_module, atoms[-1], target_sharded)
# we could use .data here, because all the operations just happen before the real training
# loop, so we don't need to track these operations in the autograd graph.
target.data = shape_consistency_manager.apply_for_autoparallel_runtime(
target.data, target.sharding_spec, target_sharding_spec).detach().clone()
assert hasattr(target_module, atoms[-1])
setattr(target_module, atoms[-1], target)
comm_actions = node.best_strategy.communication_actions
for operation_data, comm_action in comm_actions.items():
@@ -262,7 +281,7 @@ def _module_params_sharding(gm: torch.fx.GraphModule, device_mesh: DeviceMesh):
param.register_hook(hook_fn)
wrapper(target_sharded, comm_spec_to_use)
wrapper(target, comm_spec_to_use)
return gm
@@ -273,9 +292,12 @@ def implicit_comm_action_apply(gm: torch.fx.GraphModule):
pass
def runtime_preparation_pass(gm: torch.fx.GraphModule, solution: List[int], device_mesh: DeviceMesh):
def runtime_preparation_pass(gm: torch.fx.GraphModule,
solution: List[int],
device_mesh: DeviceMesh,
strategies_constructor: StrategiesConstructor = None):
gm, sharding_spec_convert_dict, origin_node_sharding_spec_dict, comm_actions_dict = _solution_annotatation(
gm, solution)
gm, solution, strategies_constructor)
gm = _node_args_converting(gm, device_mesh)
# TODO: the pass below should be uncommented after the implementation of implicit_comm_action_apply_pass completed.
# gm = implicit_comm_action_apply(gm)

View File

@@ -41,6 +41,7 @@ class StrategiesConstructor:
self.leaf_strategies = []
self.strategy_map = {}
self.solver_options = solver_options
self.no_strategy_nodes = []
def remove_duplicated_strategy(self, strategies_vector):
'''
@@ -78,12 +79,11 @@ class StrategiesConstructor:
return _check_no_strategy_for_data(node._meta_data)
no_strategy_node = []
for node in self.nodes:
strategies_vector = StrategiesVector(node)
if _check_no_strategy_for_node(node):
no_strategy_node.append(node)
self.no_strategy_nodes.append(node)
pass
# placeholder node