[doc] fixed compatiblity with docusaurus (#2657)

This commit is contained in:
Frank Lee
2023-02-09 17:06:29 +08:00
committed by GitHub
parent a4ae43f071
commit cd4f02bed8
42 changed files with 2 additions and 2 deletions

View File

@@ -9,7 +9,7 @@ Detailed instructions can be found in its `README.md`.
### 2. Integration with activation checkpoint
Colossal-Auto's automatic search function for activation checkpointing finds the most efficient checkpoint within a given memory budget, rather than just aiming for maximum memory compression. To avoid a lengthy search process for an optimal activation checkpoint, Colossal-Auto has implemented a two-stage search process. This allows the system to find a feasible distributed training solution in a reasonable amount of time while still benefiting from activation checkpointing for memory management. The integration of activation checkpointing in Colossal-AI improves the efficiency and effectiveness of large model training. You can follow the [Resnet example](TBA).
Colossal-Auto's automatic search function for activation checkpointing finds the most efficient checkpoint within a given memory budget, rather than just aiming for maximum memory compression. To avoid a lengthy search process for an optimal activation checkpoint, Colossal-Auto has implemented a two-stage search process. This allows the system to find a feasible distributed training solution in a reasonable amount of time while still benefiting from activation checkpointing for memory management. The integration of activation checkpointing in Colossal-AI improves the efficiency and effectiveness of large model training. You can follow the [Resnet example](https://github.com/hpcaitech/ColossalAI/tree/main/examples/tutorial/auto_parallel).
Detailed instructions can be found in its `README.md`.
<figure style={{textAlign: "center"}}>