added CI for unit testing (#69)

This commit is contained in:
Frank Lee
2021-12-16 10:32:08 +08:00
committed by GitHub
parent 45355a62f7
commit cd9c28e055
68 changed files with 1089 additions and 766 deletions

View File

@@ -1,4 +0,0 @@
#!/usr/bin/env sh
test_file=$1
python $test_file --rank $SLURM_PROCID --world_size $SLURM_NPROCS --host $HOST --port 29500

View File

@@ -1,4 +1,3 @@
from tests.test_layers.test_3d.common import IMG_SIZE
import torch
import torch.distributed as dist
from torch.nn import Parameter
@@ -7,7 +6,7 @@ from colossalai.context.parallel_mode import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.nn import Linear1D_Col, Linear1D_Row, TransformerMLP1D, TransformerSelfAttention1D, ViTMLP1D, ViTSelfAttention1D, ViTPatchEmbedding1D, ViTHead1D, ViTTokenFuser1D
from colossalai.utils import get_current_device, print_rank_0
from common import HIDDEN_SIZE, DEPTH, BATCH_SIZE, SEQ_LENGTH, NUM_CLASSES, check_equal, IMG_SIZE
from .common import HIDDEN_SIZE, DEPTH, BATCH_SIZE, SEQ_LENGTH, NUM_CLASSES, check_equal, IMG_SIZE
def check_linear_col():

View File

@@ -2,10 +2,13 @@
# -*- encoding: utf-8 -*-
import pytest
import torch
import torch.multiprocessing as mp
from colossalai.core import global_context as gpc
from colossalai.initialize import launch, get_default_parser
from test_layer import *
from functools import partial
from checks_1d.check_layer_1d import *
CONFIG = dict(
parallel=dict(
@@ -18,8 +21,14 @@ CONFIG = dict(
)
def check_layer():
# print_rank_0('start check_linear_col')
def check_layer(rank, world_size):
launch(config=CONFIG,
rank=rank,
world_size=world_size,
host='localhost',
port=29920,
backend='nccl')
check_linear_col()
check_linear_row()
check_attention()
@@ -28,21 +37,15 @@ def check_layer():
check_embed()
check_head()
gpc.destroy()
torch.cuda.empty_cache()
@pytest.mark.dist
@pytest.mark.skip("This test should be invoked by test.sh in the same folder as it runs on multiple gpus")
def test_1d():
parser = get_default_parser()
args = parser.parse_args()
launch(config=CONFIG,
rank=args.rank,
world_size=args.world_size,
host=args.host,
port=args.port,
backend=args.backend)
check_layer()
gpc.destroy()
world_size = 2
run_func = partial(check_layer, world_size=world_size)
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':

View File

@@ -5,7 +5,7 @@ from colossalai.context.parallel_mode import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.nn import Linear2D, LayerNorm2D, TransformerSelfAttention2D, TransformerMLP2D, TransformerLayer2D
from colossalai.utils import get_current_device, print_rank_0
from common import HIDDEN_SIZE, DEPTH, BATCH_SIZE, SEQ_LENGTH, check_equal
from .common import HIDDEN_SIZE, DEPTH, BATCH_SIZE, SEQ_LENGTH, check_equal
def check_linear():

View File

@@ -8,7 +8,7 @@ from colossalai.core import global_context as gpc
from colossalai.nn.layer.parallel_2d import Matmul_AB_2D, Matmul_ABT_2D, Matmul_ATB_2D
from colossalai.utils import get_current_device
from colossalai.utils import print_rank_0
from common import check_equal, BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE, DEPTH
from .common import check_equal, BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE, DEPTH
def check_AB():

View File

@@ -2,11 +2,15 @@
# -*- encoding: utf-8 -*-
import pytest
import torch
import torch.multiprocessing as mp
from colossalai.core import global_context as gpc
from colossalai.initialize import launch, get_default_parser
from test_layer import check_linear, check_layernorm, check_attention, check_mlp, check_transformerlayer
from test_operation import check_AB, check_ABT, check_ATB
from checks_2d.check_layer_2d import check_linear, check_layernorm, check_attention, check_mlp, check_transformerlayer
from checks_2d.check_operation_2d import check_AB, check_ABT, check_ATB
from functools import partial
CONFIG = dict(
parallel=dict(
@@ -33,20 +37,25 @@ def check_layer():
check_transformerlayer()
@pytest.mark.dist
@pytest.mark.skip("This test should be invoked by test.sh in the same folder as it runs on multiple gpus")
def test_2d():
parser = get_default_parser()
args = parser.parse_args()
def check_layer_and_operation(rank, world_size):
launch(config=CONFIG,
rank=args.rank,
world_size=args.world_size,
host=args.host,
port=args.port,
backend=args.backend)
rank=rank,
world_size=world_size,
host='localhost',
port=29921,
backend='nccl')
check_operations()
check_layer()
gpc.destroy()
torch.cuda.empty_cache()
@pytest.mark.dist
def test_2d():
world_size = 4
run_func = partial(check_layer_and_operation, world_size=world_size)
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':

View File

@@ -6,7 +6,7 @@ from colossalai.nn import (Linear2p5D, LayerNorm2p5D, TransformerSelfAttention2p
TransformerLayer2p5D)
from colossalai.utils import get_current_device
from colossalai.utils import print_rank_0
from common import *
from .common import *
def check_linear():

View File

@@ -6,7 +6,7 @@ from colossalai.nn.layer.parallel_2p5d._operation import Matmul_AB_2p5D, Matmul_
Matmul_ATB_2p5D
from colossalai.utils import get_current_device
from colossalai.utils import print_rank_0
from common import *
from .common import *
def check_AB():

View File

@@ -1,3 +0,0 @@
#!/bin/bash
python -m torch.distributed.launch test_2p5d.py --nproc_per_node 8 --host $HOST --port 29516 --world_size 8

View File

@@ -1,9 +1,13 @@
import pytest
import torch
import torch.multiprocessing as mp
from colossalai.core import global_context as gpc
from colossalai.initialize import launch, get_default_parser
from test_layer import check_linear, check_layernorm, check_attention, check_mlp, check_transformerlayer
from test_operation import check_AB, check_ABT, check_ATB
from colossalai.initialize import launch
from checks_2p5d.check_layer_2p5d import check_linear, check_layernorm, check_attention, check_mlp, check_transformerlayer
from checks_2p5d.check_operation_2p5d import check_AB, check_ABT, check_ATB
from functools import partial
CONFIG = dict(
parallel=dict(
@@ -27,20 +31,25 @@ def check_layer():
check_transformerlayer()
@pytest.mark.dist
@pytest.mark.skip("This test should be invoked by test.sh in the same folder as it runs on multiple gpus")
def test_2p5d():
parser = get_default_parser()
args = parser.parse_args()
def check_layer_and_operation(rank, world_size):
launch(config=CONFIG,
rank=args.rank,
world_size=args.world_size,
host=args.host,
port=args.port,
backend=args.backend)
check_layer()
rank=rank,
world_size=world_size,
host='localhost',
port=29922,
backend='nccl')
check_operations()
check_layer()
gpc.destroy()
torch.cuda.empty_cache()
@pytest.mark.dist
def test_2p5d():
world_size = 8
run_func = partial(check_layer_and_operation, world_size=world_size)
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':

View File

@@ -13,7 +13,7 @@ from colossalai.utils import get_current_device, print_rank_0
from colossalai.nn.layer.parallel_3d._utils import get_parallel_mode_from_env
from colossalai.constants import INPUT_GROUP_3D, WEIGHT_GROUP_3D, OUTPUT_GROUP_3D
from common import *
from .common import *
def check_linear():

View File

@@ -7,7 +7,7 @@ from colossalai.logging import get_dist_logger
from colossalai.nn.layer.parallel_3d._operation import *
from colossalai.utils import get_current_device
from common import *
from .common import *
def check_AB():

View File

@@ -1,22 +0,0 @@
#!/bin/bash
python -m torch.distributed.launch test_2d.py --nproc_per_node 8 test_3d.py --host $HOST --port 29516 --world_size 8
# expected test output
# distributed environment initialized
# AB forward: pass
# AB backward: pass
# ABT forward: pass
# ABT backward: pass
# ATB forward: pass
# ATB backward: pass
# linear backward: pass
# linear backward: pass
# layer norm forward: pass
# layer norm backward: pass
# self attention forward: pass
# self attention backward: pass
# mlp forward: pass
# mlp backward: pass
# transformerlayer forward: pass
# transformerlayer backward: pass

View File

@@ -1,11 +1,14 @@
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import pytest
import torch
import torch.multiprocessing as mp
from colossalai.initialize import launch, get_default_parser
from test_layer import *
from test_operation import *
from checks_3d.check_layer_3d import *
from checks_3d.check_operation_3d import *
from colossalai.logging import get_dist_logger
from functools import partial
CONFIG = dict(parallel=dict(pipeline=1, tensor=dict(mode='3d', size=8)),
seed=0)
@@ -38,26 +41,25 @@ def check_layer():
ranks=[0])
def _test_main():
# init dist
parser = get_default_parser()
args = parser.parse_args()
def check_layer_and_operation(rank, world_size):
launch(config=CONFIG,
rank=args.rank,
world_size=args.world_size,
host=args.host,
port=args.port,
backend=args.backend)
logger = get_dist_logger()
logger.info('Distributed environment is initialzied.', ranks=[0])
torch.backends.cudnn.benchmark = True
rank=rank,
world_size=world_size,
host='localhost',
port=29923,
backend='nccl')
# check operation
# check_operations()
# check layers
check_layer()
gpc.destroy()
torch.cuda.empty_cache()
@pytest.mark.dist
def test_3d():
world_size = 8
run_func = partial(check_layer_and_operation, world_size=world_size)
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
_test_main()
test_3d()

View File

@@ -1,9 +1,14 @@
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import pytest
import torch
import torch.multiprocessing as mp
from colossalai.initialize import launch, get_default_parser
from colossalai.logging import get_dist_logger
from test_layer import *
from checks_seq.check_layer_seq import *
from functools import partial
CONFIG = dict(
parallel=dict(
@@ -17,24 +22,28 @@ def check_layer():
check_selfattention()
def _test_main():
def run_check_sequence(rank, world_size):
# init dist
parser = get_default_parser()
args = parser.parse_args()
launch(config=CONFIG,
rank=args.rank,
world_size=args.world_size,
host=args.host,
port=args.port,
backend=args.backend)
rank=rank,
world_size=world_size,
host='localhost',
port=29924,
backend='nccl')
logger = get_dist_logger()
logger.info('Distributed environment is initialzied.', ranks=[0])
torch.backends.cudnn.benchmark = True
# check layers
check_layer()
torch.cuda.empty_cache()
@pytest.mark.dist
def test_sequence():
world_size = 4
run_func = partial(run_check_sequence, world_size=world_size)
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
_test_main()
test_sequence()