mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-10 13:30:19 +00:00
[autoparallel] add non_split linear strategy (#2078)
* [autoparallel] add non_split linear stategy * polish
This commit is contained in:
@@ -45,11 +45,11 @@ def check_linear_module_handler(rank, bias, world_size, port):
|
||||
physical_mesh_id = torch.arange(0, 4)
|
||||
mesh_shape = (2, 2)
|
||||
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
|
||||
input = torch.rand(2, 2, 4, 16).cuda()
|
||||
input = torch.rand(4, 4, 4, 16).cuda()
|
||||
# the index of linear node in computation graph
|
||||
node_index = 3
|
||||
# strategy number of linear node
|
||||
strategy_number = 10
|
||||
strategy_number = 24
|
||||
# construct input args
|
||||
input_args = [input]
|
||||
# construct meta arg names
|
||||
@@ -63,7 +63,7 @@ def check_linear_module_handler(rank, bias, world_size, port):
|
||||
node_type='bias_module')
|
||||
|
||||
tracer = ColoTracer()
|
||||
graph = tracer.trace(model, meta_args={"x": torch.rand(2, 2, 4, 16).to('meta')})
|
||||
graph = tracer.trace(model, meta_args={"x": torch.rand(4, 4, 4, 16).to('meta')})
|
||||
gm = ColoGraphModule(model, graph)
|
||||
|
||||
linear_mod_node = list(graph.nodes)[3]
|
||||
@@ -81,9 +81,9 @@ def check_linear_module_handler(rank, bias, world_size, port):
|
||||
assert op_data.data is not None
|
||||
|
||||
assert mapping['input'].name == "x"
|
||||
assert mapping['input'].data.shape == torch.Size([2, 2, 4, 16])
|
||||
assert mapping['input'].data.shape == torch.Size([4, 4, 4, 16])
|
||||
assert mapping['input'].type == OperationDataType.ARG
|
||||
assert mapping['input'].logical_shape == torch.Size([16, 16])
|
||||
assert mapping['input'].logical_shape == torch.Size([64, 16])
|
||||
|
||||
assert mapping['other'].name == "linear_weight"
|
||||
assert mapping['other'].data.shape == torch.Size([32, 16])
|
||||
@@ -93,21 +93,27 @@ def check_linear_module_handler(rank, bias, world_size, port):
|
||||
assert 'bias' not in mapping
|
||||
|
||||
assert mapping['output'].name == "linear"
|
||||
assert mapping['output'].data.shape == torch.Size([2, 2, 4, 32])
|
||||
assert mapping['output'].data.shape == torch.Size([4, 4, 4, 32])
|
||||
assert mapping['output'].type == OperationDataType.OUTPUT
|
||||
|
||||
strategies_vector = handler.register_strategy(compute_resharding_cost=False)
|
||||
strategy_name_list = [val.name for val in strategies_vector]
|
||||
# one strategy will be converted to different physical sharding spec
|
||||
assert len(strategy_name_list) > 8
|
||||
|
||||
# SS = SR x RS
|
||||
assert 'S0S1 = S0R x RS1_0' in strategy_name_list
|
||||
assert 'S0S1 = S0R x RS1_1' in strategy_name_list
|
||||
assert 'S0S1 = S0R x RS1_2' in strategy_name_list
|
||||
assert 'S1S0 = S1R x RS0_0' in strategy_name_list
|
||||
assert 'S1S0 = S1R x RS0_1' in strategy_name_list
|
||||
assert 'S1S0 = S1R x RS0_2' in strategy_name_list
|
||||
|
||||
# SR = SS x SR
|
||||
assert 'S0R = S0S1 x S1R_0' in strategy_name_list
|
||||
assert 'S0R = S0S1 x S1R_1' in strategy_name_list
|
||||
assert 'S0R = S0S1 x S1R_2' in strategy_name_list
|
||||
assert 'S1R = S1S0 x S0R_0' in strategy_name_list
|
||||
assert 'S1R = S1S0 x S0R_1' in strategy_name_list
|
||||
assert 'S1R = S1S0 x S0R_2' in strategy_name_list
|
||||
|
||||
# RS = RS x SS
|
||||
assert 'RS0 = RS1 x S1S0' in strategy_name_list
|
||||
@@ -121,6 +127,20 @@ def check_linear_module_handler(rank, bias, world_size, port):
|
||||
assert 'RS0 = RR x RS0' in strategy_name_list
|
||||
assert 'RS1 = RR x RS1' in strategy_name_list
|
||||
|
||||
# S01R = S01R x RR
|
||||
assert 'S01R = S01R x RR_0' in strategy_name_list
|
||||
assert 'S01R = S01R x RR_1' in strategy_name_list
|
||||
assert 'S01R = S01R x RR_2' in strategy_name_list
|
||||
|
||||
# RR = RS01 x S01R
|
||||
assert 'RR = RS01 x S01R' in strategy_name_list
|
||||
|
||||
# RS01 = RR x RS01
|
||||
assert 'RS01 = RR x RS01' in strategy_name_list
|
||||
|
||||
# RR = RR x RR
|
||||
assert 'RR = RR x RR' in strategy_name_list
|
||||
|
||||
for strategy in strategies_vector:
|
||||
strategy: ShardingStrategy
|
||||
input_sharding_spec = strategy.get_sharding_spec_by_name('x')
|
||||
|
@@ -33,11 +33,11 @@ def check_linear_module_handler(rank, bias, world_size, port):
|
||||
physical_mesh_id = torch.arange(0, 4)
|
||||
mesh_shape = (2, 2)
|
||||
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
|
||||
input = torch.rand(2, 2, 4, 16).cuda()
|
||||
input = torch.rand(4, 4, 4, 16).cuda()
|
||||
# the index of linear node in computation graph
|
||||
node_index = 1
|
||||
# strategy number of linear node
|
||||
strategy_number = 10
|
||||
strategy_number = 24
|
||||
# construct input args
|
||||
input_args = [input]
|
||||
# construct meta arg names
|
||||
@@ -50,7 +50,7 @@ def check_linear_module_handler(rank, bias, world_size, port):
|
||||
meta_arg_names=meta_arg_names)
|
||||
|
||||
tracer = ColoTracer()
|
||||
graph = tracer.trace(model, meta_args={"input": torch.rand(2, 2, 4, 16).to('meta')})
|
||||
graph = tracer.trace(model, meta_args={"input": torch.rand(4, 4, 4, 16).to('meta')})
|
||||
gm = ColoGraphModule(model, graph)
|
||||
|
||||
linear_mod_node = list(graph.nodes)[1]
|
||||
@@ -69,9 +69,9 @@ def check_linear_module_handler(rank, bias, world_size, port):
|
||||
assert op_data.data is not None
|
||||
|
||||
assert mapping['input'].name == "input_1"
|
||||
assert mapping['input'].data.shape == torch.Size([2, 2, 4, 16])
|
||||
assert mapping['input'].data.shape == torch.Size([4, 4, 4, 16])
|
||||
assert mapping['input'].type == OperationDataType.ARG
|
||||
assert mapping['input'].logical_shape == torch.Size([16, 16])
|
||||
assert mapping['input'].logical_shape == torch.Size([64, 16])
|
||||
|
||||
assert mapping['other'].name == "weight"
|
||||
assert mapping['other'].data.shape == torch.Size([32, 16])
|
||||
@@ -85,9 +85,9 @@ def check_linear_module_handler(rank, bias, world_size, port):
|
||||
assert mapping['bias'].logical_shape == torch.Size([32])
|
||||
|
||||
assert mapping['output'].name == "_0"
|
||||
assert mapping['output'].data.shape == torch.Size([2, 2, 4, 32])
|
||||
assert mapping['output'].data.shape == torch.Size([4, 4, 4, 32])
|
||||
assert mapping['output'].type == OperationDataType.OUTPUT
|
||||
assert mapping['output'].logical_shape == torch.Size([16, 32])
|
||||
assert mapping['output'].logical_shape == torch.Size([64, 32])
|
||||
|
||||
strategies_vector = handler.register_strategy(compute_resharding_cost=False)
|
||||
strategy_name_list = [val.name for val in strategies_vector]
|
||||
@@ -96,11 +96,19 @@ def check_linear_module_handler(rank, bias, world_size, port):
|
||||
|
||||
# SS = SR x RS
|
||||
assert 'S0S1 = S0R x RS1_0' in strategy_name_list
|
||||
assert 'S0S1 = S0R x RS1_1' in strategy_name_list
|
||||
assert 'S0S1 = S0R x RS1_2' in strategy_name_list
|
||||
assert 'S1S0 = S1R x RS0_0' in strategy_name_list
|
||||
assert 'S1S0 = S1R x RS0_1' in strategy_name_list
|
||||
assert 'S1S0 = S1R x RS0_2' in strategy_name_list
|
||||
|
||||
# SR = SS x SR
|
||||
assert 'S0R = S0S1 x S1R_0' in strategy_name_list
|
||||
assert 'S0R = S0S1 x S1R_1' in strategy_name_list
|
||||
assert 'S0R = S0S1 x S1R_2' in strategy_name_list
|
||||
assert 'S1R = S1S0 x S0R_0' in strategy_name_list
|
||||
assert 'S1R = S1S0 x S0R_1' in strategy_name_list
|
||||
assert 'S1R = S1S0 x S0R_2' in strategy_name_list
|
||||
|
||||
# RS = RS x SS
|
||||
assert 'RS0 = RS1 x S1S0' in strategy_name_list
|
||||
@@ -114,6 +122,20 @@ def check_linear_module_handler(rank, bias, world_size, port):
|
||||
assert 'RS0 = RR x RS0' in strategy_name_list
|
||||
assert 'RS1 = RR x RS1' in strategy_name_list
|
||||
|
||||
# S01R = S01R x RR
|
||||
assert 'S01R = S01R x RR_0' in strategy_name_list
|
||||
assert 'S01R = S01R x RR_1' in strategy_name_list
|
||||
assert 'S01R = S01R x RR_2' in strategy_name_list
|
||||
|
||||
# RR = RS01 x S01R
|
||||
assert 'RR = RS01 x S01R' in strategy_name_list
|
||||
|
||||
# RS01 = RR x RS01
|
||||
assert 'RS01 = RR x RS01' in strategy_name_list
|
||||
|
||||
# RR = RR x RR
|
||||
assert 'RR = RR x RR' in strategy_name_list
|
||||
|
||||
for strategy in strategies_vector:
|
||||
strategy: ShardingStrategy
|
||||
input_sharding_spec = strategy.get_sharding_spec_by_name('input_1')
|
||||
@@ -150,12 +172,12 @@ def check_linear_function_handler(rank, bias, world_size, port):
|
||||
mesh_shape = (2, 2)
|
||||
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
|
||||
|
||||
input = torch.rand(2, 2, 4, 16).cuda()
|
||||
input = torch.rand(4, 4, 4, 16).cuda()
|
||||
other = torch.rand(32, 16).cuda()
|
||||
# the index of linear node in computation graph
|
||||
node_index = 2
|
||||
# strategy number of linear node
|
||||
strategy_number = 10
|
||||
strategy_number = 24
|
||||
# construct input args
|
||||
input_args = [input, other]
|
||||
# construct meta arg names
|
||||
@@ -170,7 +192,7 @@ def check_linear_function_handler(rank, bias, world_size, port):
|
||||
tracer = ColoTracer()
|
||||
graph = tracer.trace(model,
|
||||
meta_args={
|
||||
"input": torch.rand(2, 2, 4, 16).to('meta'),
|
||||
"input": torch.rand(4, 4, 4, 16).to('meta'),
|
||||
'others': torch.rand(32, 16).to('meta')
|
||||
})
|
||||
gm = ColoGraphModule(model, graph)
|
||||
@@ -187,9 +209,9 @@ def check_linear_function_handler(rank, bias, world_size, port):
|
||||
mapping = handler.get_operation_data_mapping()
|
||||
|
||||
assert mapping['input'].name == "input_1"
|
||||
assert mapping['input'].data.shape == torch.Size([2, 2, 4, 16])
|
||||
assert mapping['input'].data.shape == torch.Size([4, 4, 4, 16])
|
||||
assert mapping['input'].type == OperationDataType.ARG
|
||||
assert mapping['input'].logical_shape == torch.Size([16, 16])
|
||||
assert mapping['input'].logical_shape == torch.Size([64, 16])
|
||||
|
||||
assert mapping['other'].name == "others"
|
||||
assert mapping['other'].data.shape == torch.Size([32, 16])
|
||||
@@ -203,7 +225,7 @@ def check_linear_function_handler(rank, bias, world_size, port):
|
||||
assert mapping['other'].logical_shape == torch.Size([16, 32])
|
||||
|
||||
assert mapping['output'].name == "linear"
|
||||
assert mapping['output'].data.shape == torch.Size([2, 2, 4, 32])
|
||||
assert mapping['output'].data.shape == torch.Size([4, 4, 4, 32])
|
||||
assert mapping['output'].type == OperationDataType.OUTPUT
|
||||
|
||||
strategies_vector = handler.register_strategy(compute_resharding_cost=False)
|
||||
@@ -213,11 +235,19 @@ def check_linear_function_handler(rank, bias, world_size, port):
|
||||
|
||||
# SS = SR x RS
|
||||
assert 'S0S1 = S0R x RS1_0' in strategy_name_list
|
||||
assert 'S0S1 = S0R x RS1_1' in strategy_name_list
|
||||
assert 'S0S1 = S0R x RS1_2' in strategy_name_list
|
||||
assert 'S1S0 = S1R x RS0_0' in strategy_name_list
|
||||
assert 'S1S0 = S1R x RS0_1' in strategy_name_list
|
||||
assert 'S1S0 = S1R x RS0_2' in strategy_name_list
|
||||
|
||||
# SR = SS x SR
|
||||
assert 'S0R = S0S1 x S1R_0' in strategy_name_list
|
||||
assert 'S0R = S0S1 x S1R_1' in strategy_name_list
|
||||
assert 'S0R = S0S1 x S1R_2' in strategy_name_list
|
||||
assert 'S1R = S1S0 x S0R_0' in strategy_name_list
|
||||
assert 'S1R = S1S0 x S0R_1' in strategy_name_list
|
||||
assert 'S1R = S1S0 x S0R_2' in strategy_name_list
|
||||
|
||||
# RS = RS x SS
|
||||
assert 'RS0 = RS1 x S1S0' in strategy_name_list
|
||||
@@ -231,6 +261,20 @@ def check_linear_function_handler(rank, bias, world_size, port):
|
||||
assert 'RS0 = RR x RS0' in strategy_name_list
|
||||
assert 'RS1 = RR x RS1' in strategy_name_list
|
||||
|
||||
# S01R = S01R x RR
|
||||
assert 'S01R = S01R x RR_0' in strategy_name_list
|
||||
assert 'S01R = S01R x RR_1' in strategy_name_list
|
||||
assert 'S01R = S01R x RR_2' in strategy_name_list
|
||||
|
||||
# RR = RS01 x S01R
|
||||
assert 'RR = RS01 x S01R' in strategy_name_list
|
||||
|
||||
# RS01 = RR x RS01
|
||||
assert 'RS01 = RR x RS01' in strategy_name_list
|
||||
|
||||
# RR = RR x RR
|
||||
assert 'RR = RR x RR' in strategy_name_list
|
||||
|
||||
for strategy in strategies_vector:
|
||||
strategy: ShardingStrategy
|
||||
input_sharding_spec = strategy.get_sharding_spec_by_name('input_1')
|
||||
|
Reference in New Issue
Block a user