[autoparallel] Add F.conv metainfo (#2069)

* [fx] metainfo class for auto parallel

* [fx] add unit test for linear metainfo

* [fx] fix bwd param for linear

* [fx] modify unit test

* [fx] modify unit test

* [fx] modify import

* [fx] modify import

* [fx] modify import

* [fx] move meta profiler to auto parallel

* [fx] add conv metainfo class

* [fx] restore profiler

* [fx] restore meta profiler

* [autoparallel] modify unit test

* [fx] modify unit test

* [autoparallel] add batchnorm metainfo class

* [autoparallel] fix batchnorm unit test function declaration

* [fx] restore profiler

* [fx] add relu metainfo class

* [fx] restore profiler

* [autoparallel] modify metainfo input

* [autoparallel] add pooling metainfo

* [autoparallel] add F.linear metainfo generator

* [autoparallel] add binary elementwise metainfo

* [fx] recover profiler

* [autoparallel] fix forward memory calculation

* [autoparallel] modify constants.py

* [autoparallel] remove redundant print

* [autoparallel] add F.conv metainfo

* [autoparallel] linear fix
This commit is contained in:
Boyuan Yao
2022-12-06 10:17:57 +08:00
committed by GitHub
parent f123476666
commit cf0268da93
4 changed files with 68 additions and 6 deletions

View File

@@ -15,6 +15,16 @@ from colossalai.utils import free_port
from tests.test_auto_parallel.test_tensor_shard.test_metainfo.utils import mem_test_for_node_strategy
class ConvFunctionModule(nn.Module):
def __init__(self, in_channels=4, out_channels=64, kernel_size=3):
super().__init__()
self.conv_weight = nn.Parameter(torch.randn(out_channels, in_channels, kernel_size, kernel_size))
def forward(self, input):
return nn.functional.conv2d(input, self.conv_weight)
def _conv_module_mem_test(rank, bias, world_size, port):
"""This function is for conv memory test
Test and print real memory cost and estimated, this test will not be executed except with the tag AUTO_PARALLEL
@@ -57,5 +67,47 @@ def test_conv_meta_concrete_info_match(bias=False):
mp.spawn(run_func_module, nprocs=world_size)
def _conv_function_mem_test(rank, world_size, port):
"""This function is for conv function memory test
Test and print real memory cost and estimated, this test will not be executed except with the tag AUTO_PARALLEL
Args:
rank: device rank
bias: indicate whether conv module need bias
world_size: number of devices
port: port for initializing process group
"""
disable_existing_loggers()
launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
model = ConvFunctionModule().cuda()
input = torch.rand(4, 4, 64, 64).cuda()
input.requires_grad = True
physical_mesh_id = torch.arange(0, 4)
mesh_shape = (2, 2)
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
# index of target node in computation graph
node_index = 2
# total number of target node strategies
strategy_number = 16
mem_test_for_node_strategy(rank=rank,
model=model,
device_mesh=device_mesh,
node_index=node_index,
strategy_number=strategy_number,
input_args=[input],
meta_arg_names=['input'])
@run_on_environment_flag(name='AUTO_PARALLEL')
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_conv_function_concrete_info_match():
world_size = 4
run_func_module = partial(_conv_function_mem_test, world_size=world_size, port=free_port())
mp.spawn(run_func_module, nprocs=world_size)
if __name__ == '__main__':
test_conv_meta_concrete_info_match()
# test_conv_meta_concrete_info_match()
test_conv_function_concrete_info_match()

View File

@@ -92,7 +92,7 @@ def _linear_function_mem_test(rank, world_size, port):
model=model,
device_mesh=device_mesh,
node_index=2,
strategy_number=13,
strategy_number=23,
input_args=[input],
meta_arg_names=["input"])