[feat] Linear1D_COL/ROW support zbv WeightGradStore;

This commit is contained in:
duanjunwen
2024-10-14 07:02:43 +00:00
parent 0ca16d5cbe
commit cfade4c36d
7 changed files with 820 additions and 28 deletions

View File

@@ -11,6 +11,7 @@ from colossalai.interface import OptimizerWrapper
from colossalai.pipeline.p2p import PipelineP2PCommunication
from colossalai.pipeline.schedule.v_schedule import ScheduledNode
from colossalai.pipeline.stage_manager import PipelineStageManager
from colossalai.pipeline.weight_grad_store import WeightGradStore
from ._utils import (
clone,
@@ -650,10 +651,10 @@ class ZeroBubbleVPipeScheduler(PipelineSchedule):
# Do not release_tensor_data loss, release_tensor_data other output_obj;
if model_chunk_id == 1 and self.stage_manager.is_first_stage(ignore_chunk=True):
self.output_tensors[model_chunk_id].append(output_obj)
self.output_tensors_dw[model_chunk_id].append(output_obj)
# self.output_tensors_dw[model_chunk_id].append(output_obj)
else:
self.output_tensors[model_chunk_id].append(output_obj)
self.output_tensors_dw[model_chunk_id].append(output_obj)
# self.output_tensors_dw[model_chunk_id].append(output_obj)
# add output to send_fwd_buffer
if model_chunk_id == 0: # chunk 0
@@ -705,13 +706,13 @@ class ZeroBubbleVPipeScheduler(PipelineSchedule):
input_obj = self.input_tensors[model_chunk_id].pop(0)
output_obj = self.output_tensors[model_chunk_id].pop(0)
# save output_tensor_grad for dw
if model_chunk_id == 1 and self.stage_manager.is_first_stage(ignore_chunk=True):
# we save loss here
self.output_tensors_grad_dw[model_chunk_id].append(output_obj)
else:
# we save output_tensor_grad here
self.output_tensors_grad_dw[model_chunk_id].append(output_tensor_grad)
# # save output_tensor_grad for dw
# if model_chunk_id == 1 and self.stage_manager.is_first_stage(ignore_chunk=True):
# # we save loss here
# self.output_tensors_grad_dw[model_chunk_id].append(output_obj)
# else:
# # we save output_tensor_grad here
# self.output_tensors_grad_dw[model_chunk_id].append(output_tensor_grad)
# Step2: bwd step
input_object_grad = self.backward_b_step(
@@ -738,6 +739,7 @@ class ZeroBubbleVPipeScheduler(PipelineSchedule):
# send to next
else:
self.send_backward_buffer[model_chunk_id].append(input_object_grad)
WeightGradStore.flush(chunk=model_chunk_id)
def schedule_w(
self,
@@ -757,16 +759,18 @@ class ZeroBubbleVPipeScheduler(PipelineSchedule):
"""
# get y & dy from buffer
output_obj = self.output_tensors_dw[model_chunk_id].pop(0)
output_obj_grad = self.output_tensors_grad_dw[model_chunk_id].pop(0)
# output_obj = self.output_tensors_dw[model_chunk_id].pop(0)
# output_obj_grad = self.output_tensors_grad_dw[model_chunk_id].pop(0)
self.backward_w_step(
model_chunk=model_chunk,
model_chunk_id=model_chunk_id,
optimizer=optimizer,
output_obj=output_obj,
output_obj_grad=output_obj_grad,
)
WeightGradStore.pop(chunk=model_chunk_id)
# self.backward_w_step(
# model_chunk=model_chunk,
# model_chunk_id=model_chunk_id,
# optimizer=optimizer,
# output_obj=output_obj,
# output_obj_grad=output_obj_grad,
# )
def run_forward_only(
self,