mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-01 09:07:51 +00:00
colo init context add device attr. (#866)
This commit is contained in:
@@ -58,6 +58,10 @@ class ColoTensor(object):
|
||||
def shape(self):
|
||||
return torch.Size(self._size)
|
||||
|
||||
@property
|
||||
def device(self):
|
||||
return self._torch_tensor.device
|
||||
|
||||
def size(self, dim=None):
|
||||
if dim is None:
|
||||
return self.shape
|
||||
@@ -105,14 +109,14 @@ class ColoTensor(object):
|
||||
device=self._device)
|
||||
return self._torch_tensor
|
||||
|
||||
def set_spec(self, spec: str, lazy_shard: bool=False) -> None:
|
||||
def set_spec(self, spec: str, lazy_shard: bool = False) -> None:
|
||||
self._shard_spec = spec
|
||||
if lazy_shard == False:
|
||||
self._shard()
|
||||
|
||||
def _shard(self):
|
||||
assert self._shard_spec is not None, 'You should call set_spec() before _shard() ColoTensor.'
|
||||
if self._shard_spec == "1Drow": # TODO It actually represents the sharding layout for Linear-1Drow-weight, but we make it simpler now.
|
||||
if self._shard_spec == "1Drow": # TODO It actually represents the sharding layout for Linear-1Drow-weight, but we make it simpler now.
|
||||
num_partition = gpc.get_world_size(ParallelMode.TENSOR)
|
||||
local_rank = gpc.get_local_rank(ParallelMode.TENSOR)
|
||||
dim = -1
|
||||
@@ -121,11 +125,11 @@ class ColoTensor(object):
|
||||
# Reshape to get shard for this rank and we don't want autograd
|
||||
# recording here for the narrow op and 'local_shard' should be a
|
||||
# leaf variable in the autograd graph.
|
||||
self._torch_tensor = self._torch_tensor.narrow(dim,
|
||||
local_rank * chunk_size, chunk_size).detach().contiguous() # TODO Shall we clone() here since detach() will point to the old tensor?
|
||||
self._torch_tensor = self._torch_tensor.narrow(dim, local_rank * chunk_size, chunk_size).detach(
|
||||
).contiguous() # TODO Shall we clone() here since detach() will point to the old tensor?
|
||||
self._torch_tensor.requires_grad = self._requires_grad
|
||||
self._size = self._torch_tensor.size()
|
||||
self._device = device # TODO A `fake` device now because torch_tensor.device always = cpu
|
||||
self._device = device # TODO A `fake` device now because torch_tensor.device always = cpu
|
||||
|
||||
@classmethod
|
||||
def __torch_function__(cls, func, types, args=(), kwargs=None):
|
||||
|
Reference in New Issue
Block a user