[booster] refactor all dp fashion plugins (#3684)

* [booster] add dp plugin base

* [booster] inherit dp plugin base

* [booster] refactor unit tests
This commit is contained in:
Hongxin Liu
2023-05-05 19:36:10 +08:00
committed by GitHub
parent b49020c1b1
commit d0915f54f4
8 changed files with 190 additions and 308 deletions

View File

@@ -1,24 +1,20 @@
import random
import warnings
from typing import Callable, List, Optional, Tuple, Union
import numpy as np
import torch
import torch.distributed as dist
import torch.nn as nn
from torch import Tensor
from torch.optim import Optimizer
from torch.optim.lr_scheduler import _LRScheduler as LRScheduler
from torch.utils._pytree import tree_map
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from colossalai.checkpoint_io import CheckpointIO
from colossalai.interface import ModelWrapper, OptimizerWrapper
from colossalai.utils import get_current_device
from colossalai.zero import zero_model_wrapper, zero_optim_wrapper
from .plugin_base import Plugin
from .dp_plugin_base import DPPluginBase
from .torch_ddp_plugin import TorchDDPCheckpointIO
__all__ = ['LowLevelZeroPlugin']
@@ -88,7 +84,7 @@ class LowLevelZeroOptimizer(OptimizerWrapper):
raise NotImplementedError('LowLevelZero does not support clip_grad_by_value')
class LowLevelZeroPlugin(Plugin):
class LowLevelZeroPlugin(DPPluginBase):
"""
Plugin for low level zero.
@@ -142,15 +138,10 @@ class LowLevelZeroPlugin(Plugin):
cpu_offload: bool = False,
verbose: bool = False,
) -> None:
assert dist.is_initialized(
), 'torch.distributed is not initialized, please use colossalai.launch to create the distributed environment'
super().__init__()
assert stage in (1, 2), f'LowLevelZeroPlugin only supports stage 1/2 training'
assert precision in ('fp16', 'fp32'), f'LowLevelZeroPlugin only supports fp16/fp32 training'
self.rank = dist.get_rank()
self.world_size = dist.get_world_size()
self.stage = stage
self.precision = precision
self.zero_optim_config = dict(reduce_bucket_size=reduce_bucket_size_in_m * 1024 * 1024,
@@ -183,57 +174,6 @@ class LowLevelZeroPlugin(Plugin):
def supported_devices(self) -> List[str]:
return ['cuda']
def prepare_train_dataloader(self,
dataset,
batch_size,
shuffle=False,
seed=1024,
drop_last=False,
pin_memory=False,
num_workers=0,
**kwargs):
r"""
Prepare a dataloader for distributed training. The dataloader will be wrapped by
`torch.utils.data.DataLoader` and `torch.utils.data.DistributedSampler`.
Note:
1. Evaluation datasets should not be passed to this function.
Args:
dataset (`torch.utils.data.Dataset`): The dataset to be loaded.
shuffle (bool, optional): Whether to shuffle the dataset. Defaults to False.
seed (int, optional): Random worker seed for sampling, defaults to 1024.
add_sampler: Whether to add ``DistributedDataParallelSampler`` to the dataset. Defaults to True.
drop_last (bool, optional): Set to True to drop the last incomplete batch, if the dataset size
is not divisible by the batch size. If False and the size of dataset is not divisible by
the batch size, then the last batch will be smaller, defaults to False.
pin_memory (bool, optional): Whether to pin memory address in CPU memory. Defaults to False.
num_workers (int, optional): Number of worker threads for this dataloader. Defaults to 0.
kwargs (dict): optional parameters for ``torch.utils.data.DataLoader``, more details could be found in
`DataLoader <https://pytorch.org/docs/stable/_modules/torch/utils/data/dataloader.html#DataLoader>`_.
Returns:
:class:`torch.utils.data.DataLoader`: A DataLoader used for training or testing.
"""
_kwargs = kwargs.copy()
sampler = DistributedSampler(dataset, num_replicas=self.world_size, rank=self.rank, shuffle=shuffle)
# Deterministic dataloader
def seed_worker(worker_id):
worker_seed = seed
np.random.seed(worker_seed)
torch.manual_seed(worker_seed)
random.seed(worker_seed)
return DataLoader(dataset,
batch_size=batch_size,
sampler=sampler,
worker_init_fn=seed_worker,
drop_last=drop_last,
pin_memory=pin_memory,
num_workers=num_workers,
**_kwargs)
def configure(
self,
model: nn.Module,