mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-06 11:32:10 +00:00
[booster] refactor all dp fashion plugins (#3684)
* [booster] add dp plugin base * [booster] inherit dp plugin base * [booster] refactor unit tests
This commit is contained in:
@@ -1,24 +1,20 @@
|
||||
import random
|
||||
import warnings
|
||||
from typing import Callable, List, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
import torch.nn as nn
|
||||
from torch import Tensor
|
||||
from torch.optim import Optimizer
|
||||
from torch.optim.lr_scheduler import _LRScheduler as LRScheduler
|
||||
from torch.utils._pytree import tree_map
|
||||
from torch.utils.data import DataLoader
|
||||
from torch.utils.data.distributed import DistributedSampler
|
||||
|
||||
from colossalai.checkpoint_io import CheckpointIO
|
||||
from colossalai.interface import ModelWrapper, OptimizerWrapper
|
||||
from colossalai.utils import get_current_device
|
||||
from colossalai.zero import zero_model_wrapper, zero_optim_wrapper
|
||||
|
||||
from .plugin_base import Plugin
|
||||
from .dp_plugin_base import DPPluginBase
|
||||
from .torch_ddp_plugin import TorchDDPCheckpointIO
|
||||
|
||||
__all__ = ['LowLevelZeroPlugin']
|
||||
@@ -88,7 +84,7 @@ class LowLevelZeroOptimizer(OptimizerWrapper):
|
||||
raise NotImplementedError('LowLevelZero does not support clip_grad_by_value')
|
||||
|
||||
|
||||
class LowLevelZeroPlugin(Plugin):
|
||||
class LowLevelZeroPlugin(DPPluginBase):
|
||||
"""
|
||||
Plugin for low level zero.
|
||||
|
||||
@@ -142,15 +138,10 @@ class LowLevelZeroPlugin(Plugin):
|
||||
cpu_offload: bool = False,
|
||||
verbose: bool = False,
|
||||
) -> None:
|
||||
|
||||
assert dist.is_initialized(
|
||||
), 'torch.distributed is not initialized, please use colossalai.launch to create the distributed environment'
|
||||
super().__init__()
|
||||
assert stage in (1, 2), f'LowLevelZeroPlugin only supports stage 1/2 training'
|
||||
assert precision in ('fp16', 'fp32'), f'LowLevelZeroPlugin only supports fp16/fp32 training'
|
||||
|
||||
self.rank = dist.get_rank()
|
||||
self.world_size = dist.get_world_size()
|
||||
|
||||
self.stage = stage
|
||||
self.precision = precision
|
||||
self.zero_optim_config = dict(reduce_bucket_size=reduce_bucket_size_in_m * 1024 * 1024,
|
||||
@@ -183,57 +174,6 @@ class LowLevelZeroPlugin(Plugin):
|
||||
def supported_devices(self) -> List[str]:
|
||||
return ['cuda']
|
||||
|
||||
def prepare_train_dataloader(self,
|
||||
dataset,
|
||||
batch_size,
|
||||
shuffle=False,
|
||||
seed=1024,
|
||||
drop_last=False,
|
||||
pin_memory=False,
|
||||
num_workers=0,
|
||||
**kwargs):
|
||||
r"""
|
||||
Prepare a dataloader for distributed training. The dataloader will be wrapped by
|
||||
`torch.utils.data.DataLoader` and `torch.utils.data.DistributedSampler`.
|
||||
|
||||
Note:
|
||||
1. Evaluation datasets should not be passed to this function.
|
||||
|
||||
Args:
|
||||
dataset (`torch.utils.data.Dataset`): The dataset to be loaded.
|
||||
shuffle (bool, optional): Whether to shuffle the dataset. Defaults to False.
|
||||
seed (int, optional): Random worker seed for sampling, defaults to 1024.
|
||||
add_sampler: Whether to add ``DistributedDataParallelSampler`` to the dataset. Defaults to True.
|
||||
drop_last (bool, optional): Set to True to drop the last incomplete batch, if the dataset size
|
||||
is not divisible by the batch size. If False and the size of dataset is not divisible by
|
||||
the batch size, then the last batch will be smaller, defaults to False.
|
||||
pin_memory (bool, optional): Whether to pin memory address in CPU memory. Defaults to False.
|
||||
num_workers (int, optional): Number of worker threads for this dataloader. Defaults to 0.
|
||||
kwargs (dict): optional parameters for ``torch.utils.data.DataLoader``, more details could be found in
|
||||
`DataLoader <https://pytorch.org/docs/stable/_modules/torch/utils/data/dataloader.html#DataLoader>`_.
|
||||
|
||||
Returns:
|
||||
:class:`torch.utils.data.DataLoader`: A DataLoader used for training or testing.
|
||||
"""
|
||||
_kwargs = kwargs.copy()
|
||||
sampler = DistributedSampler(dataset, num_replicas=self.world_size, rank=self.rank, shuffle=shuffle)
|
||||
|
||||
# Deterministic dataloader
|
||||
def seed_worker(worker_id):
|
||||
worker_seed = seed
|
||||
np.random.seed(worker_seed)
|
||||
torch.manual_seed(worker_seed)
|
||||
random.seed(worker_seed)
|
||||
|
||||
return DataLoader(dataset,
|
||||
batch_size=batch_size,
|
||||
sampler=sampler,
|
||||
worker_init_fn=seed_worker,
|
||||
drop_last=drop_last,
|
||||
pin_memory=pin_memory,
|
||||
num_workers=num_workers,
|
||||
**_kwargs)
|
||||
|
||||
def configure(
|
||||
self,
|
||||
model: nn.Module,
|
||||
|
Reference in New Issue
Block a user