mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-16 14:41:53 +00:00
[booster] refactor all dp fashion plugins (#3684)
* [booster] add dp plugin base * [booster] inherit dp plugin base * [booster] refactor unit tests
This commit is contained in:
85
tests/test_booster/test_plugin/test_dp_plugin_base.py
Normal file
85
tests/test_booster/test_plugin/test_dp_plugin_base.py
Normal file
@@ -0,0 +1,85 @@
|
||||
from typing import Callable, List, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
import torch.nn as nn
|
||||
from torch.optim import Optimizer
|
||||
from torch.optim.lr_scheduler import _LRScheduler as LRScheduler
|
||||
from torch.utils.data import DataLoader, TensorDataset
|
||||
|
||||
import colossalai
|
||||
from colossalai.booster.plugin.dp_plugin_base import DPPluginBase
|
||||
from colossalai.checkpoint_io import CheckpointIO
|
||||
from colossalai.interface import OptimizerWrapper
|
||||
from colossalai.testing import rerun_if_address_is_in_use, spawn
|
||||
|
||||
|
||||
class DPPluginWrapper(DPPluginBase):
|
||||
"""This is a wrapper class for testing DP plugin initialization and dataloader creation.
|
||||
"""
|
||||
|
||||
def configure(
|
||||
self,
|
||||
model: nn.Module,
|
||||
optimizer: Optimizer,
|
||||
criterion: Callable = None,
|
||||
dataloader: DataLoader = None,
|
||||
lr_scheduler: LRScheduler = None,
|
||||
) -> Tuple[Union[nn.Module, OptimizerWrapper, LRScheduler, DataLoader]]:
|
||||
pass
|
||||
|
||||
def control_checkpoint_io(self) -> bool:
|
||||
pass
|
||||
|
||||
def control_device(self) -> bool:
|
||||
pass
|
||||
|
||||
def control_precision(self) -> bool:
|
||||
pass
|
||||
|
||||
def get_checkpoint_io(self) -> CheckpointIO:
|
||||
pass
|
||||
|
||||
def support_no_sync(self) -> bool:
|
||||
pass
|
||||
|
||||
def supported_devices(self) -> List[str]:
|
||||
pass
|
||||
|
||||
def supported_precisions(self) -> List[str]:
|
||||
pass
|
||||
|
||||
|
||||
def check_dataloader_sharding():
|
||||
plugin = DPPluginWrapper()
|
||||
|
||||
# create a custom dasetset with 0 to 10
|
||||
dataset = TensorDataset(torch.arange(0, 10))
|
||||
train_dataloader = plugin.prepare_train_dataloader(dataset, batch_size=2)
|
||||
|
||||
# get the first batch of data
|
||||
batch = next(iter(train_dataloader))[0].cuda()
|
||||
is_rank_0 = dist.get_rank() == 0
|
||||
|
||||
if is_rank_0:
|
||||
batch_to_compare = batch.clone()
|
||||
else:
|
||||
batch_to_compare = batch
|
||||
# pass to the rank 1 value to rank 0
|
||||
dist.broadcast(batch_to_compare, src=1)
|
||||
|
||||
# compare on rank 0
|
||||
if is_rank_0:
|
||||
assert not torch.equal(batch,
|
||||
batch_to_compare), 'Same number was found across ranks but expected it to be different'
|
||||
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
# init dist env
|
||||
colossalai.launch(config=dict(), rank=rank, world_size=world_size, port=port, host='localhost')
|
||||
check_dataloader_sharding()
|
||||
|
||||
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_dp_plugin_dataloader():
|
||||
spawn(run_dist, 2)
|
Reference in New Issue
Block a user