[format] applied code formatting on changed files in pull request 5088 (#5127)

Co-authored-by: github-actions <github-actions@github.com>
This commit is contained in:
github-actions[bot]
2023-11-29 13:38:37 +08:00
committed by GitHub
parent 9110406a47
commit d10ee42f68
2 changed files with 23 additions and 10 deletions

View File

@@ -28,8 +28,8 @@ from colossalai.shardformer import ShardConfig, ShardFormer
from colossalai.shardformer.layer.utils import SeqParallelUtils
from colossalai.shardformer.policies.base_policy import Policy
from colossalai.tensor.d_tensor.api import is_distributed_tensor
from colossalai.zero.low_level import LowLevelZeroOptimizer
from colossalai.utils.device import get_current_device
from colossalai.zero.low_level import LowLevelZeroOptimizer
from .pp_plugin_base import PipelinePluginBase
@@ -385,7 +385,9 @@ class HybridParallelNaiveOptimizer(OptimizerWrapper):
total_norm_exponentiated += grad_norm_exponentiated
total_norm_exponentiated_cuda = torch.tensor([float(total_norm_exponentiated)], device=get_current_device(), dtype=torch.float32)
total_norm_exponentiated_cuda = torch.tensor(
[float(total_norm_exponentiated)], device=get_current_device(), dtype=torch.float32
)
if self.tp_size > 1:
# compute norm in tp process group
dist.all_reduce(tensor=total_norm_exponentiated_cuda, op=dist.ReduceOp.SUM, group=self.tp_pg)
@@ -586,7 +588,9 @@ class HybridParallelAMPOptimizer(MixedPrecisionOptimizer):
total_norm_exponentiated += grad_norm_exponentiated
total_norm_exponentiated_cuda = torch.tensor([float(total_norm_exponentiated)], device=get_current_device(), dtype=torch.float32)
total_norm_exponentiated_cuda = torch.tensor(
[float(total_norm_exponentiated)], device=get_current_device(), dtype=torch.float32
)
if self.tp_size > 1:
# compute norm in tp process group
dist.all_reduce(tensor=total_norm_exponentiated_cuda, op=dist.ReduceOp.SUM, group=self.tp_pg)
@@ -837,7 +841,9 @@ class HybridParallelZeroOptimizer(LowLevelZeroOptimizer):
total_norm_exponentiated += grad_norm_exponentiated
total_norm_exponentiated_cuda = torch.tensor([float(total_norm_exponentiated)], device=get_current_device(), dtype=torch.float32)
total_norm_exponentiated_cuda = torch.tensor(
[float(total_norm_exponentiated)], device=get_current_device(), dtype=torch.float32
)
if dp_size > 1:
# compute norm in dp process group
dist.all_reduce(tensor=total_norm_exponentiated_cuda, op=dist.ReduceOp.SUM, group=self.dp_pg)