[utils] update colo tensor moving APIs (#553)

This commit is contained in:
Jiarui Fang 2022-03-30 23:13:24 +08:00 committed by GitHub
parent c44d797072
commit d1211148a7
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -1,14 +1,14 @@
import torch import torch
from colossalai.utils import get_current_device from colossalai.utils import get_current_device
from colossalai.zero.sharded_param.sharded_tensor import ShardedTensor from colossalai.zero.sharded_param.tensorful_state import StatefulTensor
from typing import Tuple, Union from typing import Tuple, Union
_GLOBAL_CUDA_MEM_FRACTION = 1.0 _GLOBAL_CUDA_MEM_FRACTION = 1.0
def colo_tensor_mem_usage(tensor: Union[torch.Tensor, ShardedTensor]) -> Tuple[int, int]: def colo_tensor_mem_usage(tensor: Union[torch.Tensor, StatefulTensor]) -> Tuple[int, int]:
if isinstance(tensor, ShardedTensor): if issubclass(type(tensor), StatefulTensor):
t = tensor.payload t = tensor.payload
elif isinstance(tensor, torch.Tensor): elif isinstance(tensor, torch.Tensor):
t = tensor t = tensor
@ -46,7 +46,7 @@ def colo_cuda_memory_capacity() -> float:
return torch.cuda.get_device_properties(get_current_device()).total_memory * _GLOBAL_CUDA_MEM_FRACTION return torch.cuda.get_device_properties(get_current_device()).total_memory * _GLOBAL_CUDA_MEM_FRACTION
def colo_model_data_tensor_move(src_t: Union[ShardedTensor, torch.Tensor], tgt_t: Union[ShardedTensor, def colo_model_data_tensor_move(src_t: Union[StatefulTensor, torch.Tensor], tgt_t: Union[StatefulTensor,
torch.Tensor]) -> None: torch.Tensor]) -> None:
""" """
A colossal API for model data tensor move. A colossal API for model data tensor move.
@ -56,46 +56,44 @@ def colo_model_data_tensor_move(src_t: Union[ShardedTensor, torch.Tensor], tgt_t
The function will record the communication volume between CPU and GPU. The function will record the communication volume between CPU and GPU.
Args: Args:
t_src (Union[ShardedTensor, torch.Tensor]): source tensor t_src (Union[StatefulTensor, torch.Tensor]): source tensor
tgt_t (Union[ShardedTensor, torch.Tensor]): target tensor tgt_t (Union[StatefulTensor, torch.Tensor]): target tensor
""" """
if isinstance(src_t, ShardedTensor): if issubclass(type(src_t), StatefulTensor):
src_t_payload = src_t.payload src_t_payload = src_t.payload
else: else:
src_t_payload = src_t.data src_t_payload = src_t.data
src_dev = src_t_payload.device src_dev = src_t_payload.device
if isinstance(tgt_t, ShardedTensor): if issubclass(type(tgt_t), StatefulTensor):
tgt_t_payload = tgt_t.payload tgt_t_payload = tgt_t.payload
else: else:
tgt_t_payload = tgt_t.data tgt_t_payload = tgt_t.data
tgt_dev = tgt_t_payload.device
tgt_t_payload.copy_(src_t_payload) tgt_t_payload.copy_(src_t_payload)
# remove payload of src_t # remove payload of src_t
if isinstance(src_t, ShardedTensor): if issubclass(type(src_t), StatefulTensor):
src_t.reset_payload(torch.tensor([], device=src_dev, dtype=src_t_payload.dtype)) src_t.reset_payload(torch.tensor([], device=src_dev, dtype=src_t_payload.dtype))
else: else:
src_t.data = torch.tensor([], device=src_dev, dtype=src_t_payload.dtype) src_t.data = torch.tensor([], device=src_dev, dtype=src_t_payload.dtype)
def colo_model_data_tensor_move_inline(t: Union[ShardedTensor, torch.Tensor], def colo_model_data_tensor_move_inline(t: Union[StatefulTensor, torch.Tensor], target_device: Union[torch.device,
target_device: torch.device, int]) -> None:
use_tracer: bool = True) -> None:
""" """
move a tensor to the target_device move a tensor to the target_device
Args: Args:
t (Union[ShardedTensor, torch.Tensor]): the tensor be moved t (Union[StatefulTensor, torch.Tensor]): the tensor be moved
""" """
if isinstance(t, torch.Tensor):
if isinstance(t, ShardedTensor):
t_payload = t.payload
elif isinstance(t, torch.Tensor):
t_payload = t t_payload = t
elif issubclass(type(t), StatefulTensor):
t_payload = t.payload
else: else:
raise TypeError('colo_model_data_move_to_cpu dose not accept type {type(t)}') raise TypeError('colo_model_data_move_to_cpu dose not accept type {type(t)}')
assert isinstance(target_device, torch.device) if isinstance(target_device, int):
target_device = torch.cuda(f'device"{target_device}')
# deal with torch.device('cpu') and torch.device('cpu:0) # deal with torch.device('cpu') and torch.device('cpu:0)
if t_payload.device.type == target_device.type: if t_payload.device.type == target_device.type:
@ -103,16 +101,16 @@ def colo_model_data_tensor_move_inline(t: Union[ShardedTensor, torch.Tensor],
t_payload.data = t_payload.data.to(target_device) t_payload.data = t_payload.data.to(target_device)
def colo_model_data_move_to_cpu(t: Union[ShardedTensor, torch.Tensor]) -> None: def colo_model_data_move_to_cpu(t: Union[StatefulTensor, torch.Tensor]) -> None:
"""colo_model_data_move_to_cpu """colo_model_data_move_to_cpu
move a model data tensor from gpu to cpu move a model data tensor from gpu to cpu
Args: Args:
t (Union[ShardedTensor, torch.Tensor]): _description_ t (Union[StatefulTensor, torch.Tensor]): _description_
""" """
if isinstance(t, ShardedTensor): if issubclass(type(t), StatefulTensor):
t_payload = t.payload t_payload = t.payload
elif isinstance(t, torch.Tensor): elif isinstance(t, torch.Tensor):
t_payload = t t_payload = t
@ -126,17 +124,17 @@ def colo_model_data_move_to_cpu(t: Union[ShardedTensor, torch.Tensor]) -> None:
t_payload.data = t_payload.data.cpu() t_payload.data = t_payload.data.cpu()
def colo_model_tensor_clone(t: Union[ShardedTensor, torch.Tensor], target_device: torch.device) -> torch.Tensor: def colo_model_tensor_clone(t: Union[StatefulTensor, torch.Tensor], target_device: torch.device) -> torch.Tensor:
""" """
Clone a model data tensor Clone a model data tensor
Args: Args:
t (Union[ShardedTensor, torch.Tensor]): a model data tensor t (Union[StatefulTensor, torch.Tensor]): a model data tensor
target_device (torch.device): the target device target_device (torch.device): the target device
Returns: Returns:
torch.Tensor: a cloned torch tensor torch.Tensor: a cloned torch tensor
""" """
t_payload = t.payload if isinstance(t, ShardedTensor) else t t_payload = t.payload if issubclass(type(t), StatefulTensor) else t
ret = t_payload.to(target_device) ret = t_payload.to(target_device)
return ret return ret