mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-01 01:06:00 +00:00
[Tensor] initialize the ColoOptimizer (#898)
* [Tensor] activation is an attr of ColoTensor * [Tensor] add optimizer * only detach parameters in context * polish code
This commit is contained in:
@@ -8,7 +8,7 @@ from colossalai.testing import parameterize, rerun_if_address_is_in_use
|
||||
from colossalai.utils.cuda import get_current_device
|
||||
from colossalai.utils import free_port
|
||||
from colossalai.utils import ColoInitContext
|
||||
from colossalai.tensor import named_params_with_colotensor, TensorSpec, ComputePattern, ParallelAction, ColoTensor
|
||||
from colossalai.tensor import named_params_with_colotensor, TensorSpec, ComputePattern, ParallelAction, ColoTensor, ColoOptimizer
|
||||
from colossalai.context import ParallelMode
|
||||
from colossalai.core import global_context as gpc
|
||||
|
||||
@@ -26,6 +26,7 @@ def set_seed(seed):
|
||||
torch.cuda.manual_seed(seed)
|
||||
torch.backends.cudnn.deterministic = True
|
||||
|
||||
|
||||
def run_1d_col_tp():
|
||||
# A simple net with two stacked nn.Linear
|
||||
get_components_func = non_distributed_component_funcs.get_callable('simple_net')
|
||||
@@ -98,6 +99,7 @@ def run_1d_col_tp():
|
||||
if i > 5:
|
||||
break
|
||||
|
||||
|
||||
# Test the overrided parameters() and named_parameters() member functions
|
||||
def test_model_parameters():
|
||||
# build a module with 2 Linear, 4 parameters in total.
|
||||
@@ -127,6 +129,34 @@ def test_model_parameters():
|
||||
assert param_cnt == 2
|
||||
|
||||
|
||||
def test_colo_optimizer():
|
||||
get_components_func = non_distributed_component_funcs.get_callable('simple_net')
|
||||
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
||||
set_seed(1)
|
||||
with ColoInitContext(lazy_memory_allocate=False, device=get_current_device()):
|
||||
model = model_builder(checkpoint=True)
|
||||
|
||||
colo_optimizer = ColoOptimizer(dict(model.named_parameters()), torch.optim.SGD, lr=0.1)
|
||||
for i, (data, label) in enumerate(train_dataloader):
|
||||
colo_optimizer.zero_grad()
|
||||
data = data.to(get_current_device())
|
||||
label = label.to(get_current_device())
|
||||
|
||||
# Bcast rank0 data to all processes
|
||||
if criterion:
|
||||
output = model(data)
|
||||
loss = criterion(output, label)
|
||||
else:
|
||||
output = model(data, label)
|
||||
loss = output
|
||||
|
||||
loss.backward()
|
||||
colo_optimizer.step()
|
||||
|
||||
if i > 5:
|
||||
break
|
||||
|
||||
|
||||
def run_1d_row_tp():
|
||||
# A simple net with two stacked nn.Linear
|
||||
get_components_func = non_distributed_component_funcs.get_callable('simple_net')
|
||||
@@ -209,4 +239,5 @@ def test_simple_net(world_size):
|
||||
|
||||
if __name__ == '__main__':
|
||||
# test_simple_net()
|
||||
test_model_parameters()
|
||||
# test_model_parameters()
|
||||
test_colo_optimizer()
|
||||
|
Reference in New Issue
Block a user