mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-10 21:40:02 +00:00
[npu] change device to accelerator api (#5239)
* update accelerator * fix timer * fix amp * update * fix * update bug * add error raise * fix autocast * fix set device * remove doc accelerator * update doc * update doc * update doc * use nullcontext * update cpu * update null context * change time limit for example * udpate * update * update * update * [npu] polish accelerator code --------- Co-authored-by: Xuanlei Zhao <xuanlei.zhao@gmail.com> Co-authored-by: zxl <43881818+oahzxl@users.noreply.github.com>
This commit is contained in:
@@ -1,7 +1,7 @@
|
||||
import torch
|
||||
|
||||
from colossalai.accelerator import get_accelerator
|
||||
from colossalai.legacy.nn.layer.colossalai_layer import Embedding, Linear
|
||||
from colossalai.utils import get_current_device
|
||||
|
||||
from .bias_dropout_add import bias_dropout_add_fused_train
|
||||
from .bias_gelu import bias_gelu_impl
|
||||
@@ -46,11 +46,13 @@ def warmup_jit_fusion(
|
||||
):
|
||||
"""Compile JIT functions before the main training steps"""
|
||||
|
||||
embed = Embedding(vocab_size, hidden_size).to(get_current_device())
|
||||
linear_1 = Linear(hidden_size, hidden_size * 4, skip_bias_add=True).to(get_current_device())
|
||||
linear_2 = Linear(hidden_size * 4, hidden_size, skip_bias_add=True).to(get_current_device())
|
||||
embed = Embedding(vocab_size, hidden_size).to(get_accelerator().get_current_device())
|
||||
linear_1 = Linear(hidden_size, hidden_size * 4, skip_bias_add=True).to(get_accelerator().get_current_device())
|
||||
linear_2 = Linear(hidden_size * 4, hidden_size, skip_bias_add=True).to(get_accelerator().get_current_device())
|
||||
|
||||
x = torch.randint(vocab_size, (batch_size, seq_length), dtype=torch.long, device=get_current_device())
|
||||
x = torch.randint(
|
||||
vocab_size, (batch_size, seq_length), dtype=torch.long, device=get_accelerator().get_current_device()
|
||||
)
|
||||
x = embed(x)
|
||||
y, y_bias = linear_1(x)
|
||||
z, z_bias = linear_2(y)
|
||||
@@ -58,8 +60,8 @@ def warmup_jit_fusion(
|
||||
# prop and recomputation
|
||||
for bias_grad, input_grad in zip([True, True], [False, True]):
|
||||
for _ in range(10):
|
||||
bias = torch.rand_like(y_bias, dtype=dtype, device=get_current_device())
|
||||
input_ = torch.rand_like(y, dtype=dtype, device=get_current_device())
|
||||
bias = torch.rand_like(y_bias, dtype=dtype, device=get_accelerator().get_current_device())
|
||||
input_ = torch.rand_like(y, dtype=dtype, device=get_accelerator().get_current_device())
|
||||
bias.requires_grad, input_.requires_grad = bias_grad, input_grad
|
||||
bias_gelu_impl(input_, bias)
|
||||
|
||||
@@ -69,9 +71,9 @@ def warmup_jit_fusion(
|
||||
# prop and recomputation
|
||||
for input_grad, bias_grad, residual_grad in zip([False, True], [True, True], [True, True]):
|
||||
for _ in range(10):
|
||||
input_ = torch.rand_like(z, dtype=dtype, device=get_current_device())
|
||||
residual = torch.rand_like(x, dtype=dtype, device=get_current_device())
|
||||
bias = torch.rand_like(z_bias, dtype=dtype, device=get_current_device())
|
||||
input_ = torch.rand_like(z, dtype=dtype, device=get_accelerator().get_current_device())
|
||||
residual = torch.rand_like(x, dtype=dtype, device=get_accelerator().get_current_device())
|
||||
bias = torch.rand_like(z_bias, dtype=dtype, device=get_accelerator().get_current_device())
|
||||
input_.requires_grad = input_grad
|
||||
bias.requires_grad = bias_grad
|
||||
residual.requires_grad = residual_grad
|
||||
|
Reference in New Issue
Block a user