[npu] change device to accelerator api (#5239)

* update accelerator

* fix timer

* fix amp

* update

* fix

* update bug

* add error raise

* fix autocast

* fix set device

* remove doc accelerator

* update doc

* update doc

* update doc

* use nullcontext

* update cpu

* update null context

* change time limit for example

* udpate

* update

* update

* update

* [npu] polish accelerator code

---------

Co-authored-by: Xuanlei Zhao <xuanlei.zhao@gmail.com>
Co-authored-by: zxl <43881818+oahzxl@users.noreply.github.com>
This commit is contained in:
Hongxin Liu
2024-01-09 10:20:05 +08:00
committed by GitHub
parent dd2c28a323
commit d202cc28c0
128 changed files with 1773 additions and 868 deletions

View File

@@ -10,6 +10,7 @@ import torch.nn.functional as F
from torch import Tensor
from torch.nn.parameter import Parameter
from colossalai.accelerator import get_accelerator
from colossalai.kernel import LayerNorm
from colossalai.legacy.communication import broadcast
from colossalai.legacy.context import ParallelMode, seed
@@ -22,7 +23,6 @@ from colossalai.legacy.utils.checkpointing import (
partition_tensor_parallel_state_dict,
)
from colossalai.nn import init as init
from colossalai.utils.device import get_current_device
from ..base_layer import ParallelLayer
from ..colossalai_layer._utils import ColossalaiModule
@@ -221,7 +221,7 @@ class Classifier1D(ParallelLayer):
# Parameters.
# Initialize weight.
factory_kwargs = {"device": get_current_device(), "dtype": dtype}
factory_kwargs = {"device": get_accelerator().get_current_device(), "dtype": dtype}
if weight is not None:
self.weight = weight
self.has_weight = False
@@ -357,7 +357,7 @@ class VocabParallelClassifier1D(ParallelLayer):
# Parameters.
# Initialize weight.
factory_kwargs = {"device": get_current_device(), "dtype": dtype}
factory_kwargs = {"device": get_accelerator().get_current_device(), "dtype": dtype}
if weight is not None:
self.weight = weight
self.has_weight = False
@@ -499,7 +499,7 @@ class Linear1D_Col(ParallelLayer):
# Parameters.
# Initialize weight.
factory_kwargs = {"device": get_current_device(), "dtype": dtype}
factory_kwargs = {"device": get_accelerator().get_current_device(), "dtype": dtype}
self.weight = Parameter(torch.empty(self.out_features_per_partition, self.in_features, **factory_kwargs))
if bias:
@@ -638,7 +638,7 @@ class Linear1D_Row(ParallelLayer):
# Parameters.
# Initialize weight.
factory_kwargs = {"device": get_current_device(), "dtype": dtype}
factory_kwargs = {"device": get_accelerator().get_current_device(), "dtype": dtype}
self.weight = Parameter(torch.empty(self.out_features, self.input_size_per_partition, **factory_kwargs))
if self.stream_chunk_num > 1:
@@ -802,7 +802,9 @@ class Embedding1D(ParallelLayer):
self.embed_kwargs = kwargs
self.weight = Parameter(
torch.empty((num_embeddings, embed_dim_per_partition), device=get_current_device(), dtype=dtype)
torch.empty(
(num_embeddings, embed_dim_per_partition), device=get_accelerator().get_current_device(), dtype=dtype
)
)
self.reset_parameters(weight_initializer)
@@ -912,7 +914,11 @@ class VocabParallelEmbedding1D(ParallelLayer):
self.vocab_end_index = self.vocab_start_index + self.num_embeddings_per_partition
self.weight = Parameter(
torch.empty((self.num_embeddings_per_partition, self.embed_dim), device=get_current_device(), dtype=dtype)
torch.empty(
(self.num_embeddings_per_partition, self.embed_dim),
device=get_accelerator().get_current_device(),
dtype=dtype,
)
)
self.reset_parameters(weight_initializer)