mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-08 20:40:34 +00:00
[npu] change device to accelerator api (#5239)
* update accelerator * fix timer * fix amp * update * fix * update bug * add error raise * fix autocast * fix set device * remove doc accelerator * update doc * update doc * update doc * use nullcontext * update cpu * update null context * change time limit for example * udpate * update * update * update * [npu] polish accelerator code --------- Co-authored-by: Xuanlei Zhao <xuanlei.zhao@gmail.com> Co-authored-by: zxl <43881818+oahzxl@users.noreply.github.com>
This commit is contained in:
@@ -5,10 +5,10 @@ import torch.distributed as dist
|
||||
from torch import Tensor
|
||||
from torch.cuda.amp import custom_bwd, custom_fwd
|
||||
|
||||
from colossalai.accelerator import get_accelerator
|
||||
from colossalai.legacy.communication.collective import all_gather, all_reduce, reduce_scatter
|
||||
from colossalai.legacy.context.parallel_mode import ParallelMode
|
||||
from colossalai.legacy.core import global_context as gpc
|
||||
from colossalai.utils import get_current_device
|
||||
|
||||
|
||||
def matmul_2d(
|
||||
@@ -250,7 +250,7 @@ class Matmul_AB_2D(torch.autograd.Function):
|
||||
B_shape = B.shape
|
||||
B = B.reshape((-1, B_shape[-1]))
|
||||
C_shape = (A.shape[0], B.shape[-1])
|
||||
C = torch.zeros(C_shape, dtype=A.dtype, device=get_current_device())
|
||||
C = torch.zeros(C_shape, dtype=A.dtype, device=get_accelerator().get_current_device())
|
||||
|
||||
# use circular buffer to store the communication tensor
|
||||
# 2 is enough for all cases
|
||||
@@ -399,7 +399,7 @@ class Matmul_ABT_2D(torch.autograd.Function):
|
||||
B_shape = B.shape
|
||||
B = B.reshape((-1, B_shape[-1]))
|
||||
C_shape = (A.shape[0], B.shape[0])
|
||||
C = torch.empty(C_shape, dtype=A.dtype, device=get_current_device())
|
||||
C = torch.empty(C_shape, dtype=A.dtype, device=get_accelerator().get_current_device())
|
||||
|
||||
# use circular buffer to store the communication tensor
|
||||
# 2 is enough for all cases
|
||||
@@ -556,7 +556,7 @@ class Matmul_ATB_2D(torch.autograd.Function):
|
||||
B_shape = B.shape
|
||||
B = B.reshape((-1, B_shape[-1]))
|
||||
C_shape = (A.shape[-1], B.shape[-1])
|
||||
C = torch.empty(C_shape, dtype=A.dtype, device=get_current_device())
|
||||
C = torch.empty(C_shape, dtype=A.dtype, device=get_accelerator().get_current_device())
|
||||
|
||||
# use circular buffer to store the communication tensor
|
||||
# 2 is enough for all cases
|
||||
|
Reference in New Issue
Block a user