mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-04 18:40:28 +00:00
[npu] change device to accelerator api (#5239)
* update accelerator * fix timer * fix amp * update * fix * update bug * add error raise * fix autocast * fix set device * remove doc accelerator * update doc * update doc * update doc * use nullcontext * update cpu * update null context * change time limit for example * udpate * update * update * update * [npu] polish accelerator code --------- Co-authored-by: Xuanlei Zhao <xuanlei.zhao@gmail.com> Co-authored-by: zxl <43881818+oahzxl@users.noreply.github.com>
This commit is contained in:
@@ -8,6 +8,7 @@ import torch.nn.functional as F
|
||||
from torch import Tensor
|
||||
from torch.nn import Parameter
|
||||
|
||||
from colossalai.accelerator import get_accelerator
|
||||
from colossalai.legacy.communication import all_reduce, broadcast
|
||||
from colossalai.legacy.constants import (
|
||||
INPUT_GROUP_3D,
|
||||
@@ -27,7 +28,6 @@ from colossalai.legacy.utils.checkpointing import (
|
||||
partition_tensor_parallel_state_dict,
|
||||
)
|
||||
from colossalai.nn import init as init
|
||||
from colossalai.utils.device import get_current_device
|
||||
|
||||
from ..utils import divide, set_tensor_parallel_attribute_by_partition, to_2tuple
|
||||
from ._operation import (
|
||||
@@ -69,11 +69,13 @@ class LayerNorm3D(ParallelLayer):
|
||||
self.normalized_shape_per_partition = divide(normalized_shape, self.depth)
|
||||
|
||||
self.weight = Parameter(
|
||||
torch.ones(self.normalized_shape_per_partition, device=get_current_device(), dtype=dtype)
|
||||
torch.ones(self.normalized_shape_per_partition, device=get_accelerator().get_current_device(), dtype=dtype)
|
||||
)
|
||||
if bias:
|
||||
self.bias = Parameter(
|
||||
torch.zeros(self.normalized_shape_per_partition, device=get_current_device(), dtype=dtype)
|
||||
torch.zeros(
|
||||
self.normalized_shape_per_partition, device=get_accelerator().get_current_device(), dtype=dtype
|
||||
)
|
||||
)
|
||||
else:
|
||||
self.bias = None
|
||||
@@ -202,13 +204,15 @@ class Linear3D(ParallelLayer):
|
||||
torch.empty(
|
||||
self.in_features_per_partition,
|
||||
self.out_features_per_partition,
|
||||
device=get_current_device(),
|
||||
device=get_accelerator().get_current_device(),
|
||||
dtype=dtype,
|
||||
)
|
||||
)
|
||||
if bias:
|
||||
self.bias = Parameter(
|
||||
torch.zeros(self.bias_features_per_partition, device=get_current_device(), dtype=dtype)
|
||||
torch.zeros(
|
||||
self.bias_features_per_partition, device=get_accelerator().get_current_device(), dtype=dtype
|
||||
)
|
||||
)
|
||||
else:
|
||||
self.bias = None
|
||||
@@ -380,11 +384,18 @@ class Classifier3D(ParallelLayer):
|
||||
self.has_weight = False
|
||||
else:
|
||||
self.weight = Parameter(
|
||||
torch.empty(self.num_classes, self.in_features_per_partition, device=get_current_device(), dtype=dtype)
|
||||
torch.empty(
|
||||
self.num_classes,
|
||||
self.in_features_per_partition,
|
||||
device=get_accelerator().get_current_device(),
|
||||
dtype=dtype,
|
||||
)
|
||||
)
|
||||
self.has_weight = True
|
||||
if bias:
|
||||
self.bias = Parameter(torch.zeros(self.num_classes, device=get_current_device(), dtype=dtype))
|
||||
self.bias = Parameter(
|
||||
torch.zeros(self.num_classes, device=get_accelerator().get_current_device(), dtype=dtype)
|
||||
)
|
||||
else:
|
||||
self.bias = None
|
||||
|
||||
@@ -523,14 +534,16 @@ class VocabParallelClassifier3D(ParallelLayer):
|
||||
torch.empty(
|
||||
self.out_features_per_partition,
|
||||
self.in_features_per_partition,
|
||||
device=get_current_device(),
|
||||
device=get_accelerator().get_current_device(),
|
||||
dtype=dtype,
|
||||
)
|
||||
)
|
||||
self.has_weight = True
|
||||
if bias:
|
||||
self.bias = Parameter(
|
||||
torch.zeros(self.bias_features_per_partition, device=get_current_device(), dtype=dtype)
|
||||
torch.zeros(
|
||||
self.bias_features_per_partition, device=get_accelerator().get_current_device(), dtype=dtype
|
||||
)
|
||||
)
|
||||
else:
|
||||
self.bias = None
|
||||
@@ -705,16 +718,24 @@ class PatchEmbedding3D(ParallelLayer):
|
||||
|
||||
self.weight = nn.Parameter(
|
||||
torch.empty(
|
||||
(embed_size_per_partition, in_chans, *self.patch_size), device=get_current_device(), dtype=dtype
|
||||
(embed_size_per_partition, in_chans, *self.patch_size),
|
||||
device=get_accelerator().get_current_device(),
|
||||
dtype=dtype,
|
||||
)
|
||||
)
|
||||
self.bias = nn.Parameter(torch.empty(embed_size_per_partition, device=get_current_device(), dtype=dtype))
|
||||
self.bias = nn.Parameter(
|
||||
torch.empty(embed_size_per_partition, device=get_accelerator().get_current_device(), dtype=dtype)
|
||||
)
|
||||
|
||||
self.cls_token = nn.Parameter(
|
||||
torch.zeros((1, 1, embed_size_per_partition), device=get_current_device(), dtype=dtype)
|
||||
torch.zeros((1, 1, embed_size_per_partition), device=get_accelerator().get_current_device(), dtype=dtype)
|
||||
)
|
||||
self.pos_embed = nn.Parameter(
|
||||
torch.zeros((1, self.num_patches + 1, embed_size_per_partition), device=get_current_device(), dtype=dtype)
|
||||
torch.zeros(
|
||||
(1, self.num_patches + 1, embed_size_per_partition),
|
||||
device=get_accelerator().get_current_device(),
|
||||
dtype=dtype,
|
||||
)
|
||||
)
|
||||
|
||||
self.reset_parameters(weight_initializer, bias_initializer, position_embed_initializer)
|
||||
@@ -880,7 +901,9 @@ class Embedding3D(ParallelLayer):
|
||||
self.embed_kwargs = kwargs
|
||||
|
||||
self.weight = nn.Parameter(
|
||||
torch.empty((num_embeddings, embed_dim_per_partition), device=get_current_device(), dtype=dtype)
|
||||
torch.empty(
|
||||
(num_embeddings, embed_dim_per_partition), device=get_accelerator().get_current_device(), dtype=dtype
|
||||
)
|
||||
)
|
||||
|
||||
self.reset_parameters(weight_initializer)
|
||||
@@ -1019,7 +1042,7 @@ class VocabParallelEmbedding3D(ParallelLayer):
|
||||
self.weight = Parameter(
|
||||
torch.empty(
|
||||
(self.num_embeddings_per_partition, self.embed_dim_per_partition),
|
||||
device=get_current_device(),
|
||||
device=get_accelerator().get_current_device(),
|
||||
dtype=dtype,
|
||||
)
|
||||
)
|
||||
|
Reference in New Issue
Block a user