mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-28 04:55:25 +00:00
[npu] change device to accelerator api (#5239)
* update accelerator * fix timer * fix amp * update * fix * update bug * add error raise * fix autocast * fix set device * remove doc accelerator * update doc * update doc * update doc * use nullcontext * update cpu * update null context * change time limit for example * udpate * update * update * update * [npu] polish accelerator code --------- Co-authored-by: Xuanlei Zhao <xuanlei.zhao@gmail.com> Co-authored-by: zxl <43881818+oahzxl@users.noreply.github.com>
This commit is contained in:
@@ -3,11 +3,11 @@ from typing import List, Optional
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
|
||||
from colossalai.accelerator import get_accelerator
|
||||
from colossalai.legacy.zero.gemini.tensor_utils import colo_model_data_tensor_move_inline
|
||||
from colossalai.legacy.zero.shard_utils import BaseShardStrategy
|
||||
from colossalai.legacy.zero.shard_utils.commons import get_shard
|
||||
from colossalai.legacy.zero.sharded_param.sharded_tensor import ShardedTensor
|
||||
from colossalai.utils import get_current_device
|
||||
|
||||
|
||||
class TensorShardStrategy(BaseShardStrategy):
|
||||
@@ -34,9 +34,9 @@ class TensorShardStrategy(BaseShardStrategy):
|
||||
if t.is_sharded:
|
||||
return
|
||||
if t.payload.device.type == "cuda":
|
||||
assert t.payload.device == get_current_device(), (
|
||||
assert t.payload.device == get_accelerator().get_current_device(), (
|
||||
f"shard tensor on cuda device index {t.payload.device.index},"
|
||||
f" but current cuda device is {get_current_device()}"
|
||||
f" but current cuda device is {get_accelerator().get_current_device()}"
|
||||
)
|
||||
sharded_payload, _ = get_shard(t.payload, dist.get_rank(process_group), dist.get_world_size(process_group))
|
||||
t.payload_reset(sharded_payload)
|
||||
@@ -50,7 +50,9 @@ class TensorShardStrategy(BaseShardStrategy):
|
||||
world_size = dist.get_world_size(process_group)
|
||||
rank = dist.get_rank(process_group)
|
||||
|
||||
buffer = torch.empty(payload_numel * world_size, dtype=t.payload.dtype, device=get_current_device())
|
||||
buffer = torch.empty(
|
||||
payload_numel * world_size, dtype=t.payload.dtype, device=get_accelerator().get_current_device()
|
||||
)
|
||||
buffer_list = list(torch.chunk(buffer, chunks=world_size, dim=0))
|
||||
buffer_list[rank].copy_(t.payload)
|
||||
|
||||
|
Reference in New Issue
Block a user